Figure 5: The global climate of the 21st century will depend on natural changes and the response of the climate system to human activities. Climate models project the response of many climate variables – such as increases in global surface temperature and sea level – to various scenarios of greenhouse gas and other human-related emissions. (a) shows the CO2 emissions of the six illustrative SRES scenarios, which are summarised in the box on page 18, along with IS92a for comparison purposes with the SAR. (b) shows projected CO2 concentrations. (c) shows anthropogenic SO2 emissions. Emissions of other gases and other aerosols were included in the model but are not shown in the figure. (d) and (e) show the projected temperature and sea level responses, respectively. The "several models all SRES envelope" in (d) and (e) shows the temperature and sea level rise, respectively, for the simple model when tuned to a number of complex models with a range of climate sensitivities. All SRES envelopes refer to the full range of 35 SRES scenarios. The "model average all SRES envelope" shows the average from these models for the range of scenarios. Note that the warming and sea level rise from these emissions would continue well beyond 2100. Also note that this range does not allow for uncertainty relating to ice dynamical changes in the West Antarctic ice sheet, nor does it account for uncertainties in projecting non-sulphate aerosols and greenhouse gas concentrations. [Based upon (a) Chapter 3, Figure 3.12, (b) Chapter 3, Figure 3.12, (c) Chapter 5, Figure 5.13, (d) Chapter 9, Figure 9.14, (e) Chapter 11, Figure 11.12, Appendix II |
Table 1 depicts an assessment of confidence
in observed changes in extremes of weather and climate during the latter half
of the 20th century (left column) and in projected changes during the 21st century
(right column)a. This assessment relies on observational and modelling
studies, as well as the physical
plausibility of future projections across all commonly-used scenarios and is
based on expert judgement
7.
Table 1: Estimates of confidence in observed and projected changes in extreme weather and climate events. | ||||||
Confidence in observed changes (latter half of the 20th century) |
Changes in Phenomenon |
Confidence in projected changes (during the 21st century) |
||||
Likely7 | Higher maximum temperatures and more hot days over nearly all land areas | Very likely7 | ||||
Very likely7 | Higher minimum temperatures, fewer cold days and frost days over nearly all land areas | Very likely7 | ||||
Very likely7 | Reduced diurnal temperature range over most land areas | Very likely7 | ||||
Likely7, over many areas | Increase of heat index12 over land areas | Very likely7, over most areas | ||||
Likely7, over many Northern Hemisphere mid- to high latitude land areas | More intense precipitation events b | Very likely7, over most areas | ||||
Likely7, in a few areas | Increased summer continental drying and associated risk of drought | Likely7, over most mid-latitude continental interiors. (Lack of consistent projections in other areas) | ||||
Not observed in the few analyses available | Increase in tropical cyclone peak wind intensities c | Likely7, over some areas | ||||
Insufficient data for assessment | Increase in tropical cyclone mean and peak precipitation intensities c | Likely7, over some areas | ||||
a For more details
see Chapter 2 (observations)
and Chapter 9, 10
(projections). b For other areas, there are either insufficient data or conflicting analyses. c Past and future changes in tropical cyclone location and frequency are uncertain. |
Further research is required to improve the ability to detect, attribute and
understand climate change, to reduce uncertainties and to project future climate
changes. In particular, there is a need for additional systematic and sustained
observations, modelling and process studies. A serious concern is the decline
of observational networks. The following are high priority areas for action.
Cutting across these foci are crucial needs associated with strengthening international co-operation and co-ordination in order to better utilise scientific, computational and observational resources. This should also promote the free exchange of data among scientists. A special need is to increase the observational and research capacities in many regions, particularly in developing countries. Finally, as is the goal of this assessment, there is a continuing imperative to communicate research advances in terms that are relevant to decision making.
The Emissions Scenarios of the Special Report on Emissions Scenarios (SRES) A1. The A1 storyline and scenario family describes a future world of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The A1 scenario family develops into three groups that describe alternative directions of technological change in the energy system. The three A1 groups are distinguished by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B) (where balanced is defined as not relying too heavily on one particular energy source, on the assumption that similar improvement rates apply to all energy supply and end use technologies). A2. The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is self-reliance and preservation of local identities. Fertility patterns across regions converge very slowly, which results in continuously increasing population. Economic development is primarily regionally oriented and per capita economic growth and technological change more fragmented and slower than other storylines. B1. The B1 storyline and scenario family describes a convergent world with the same global population, that peaks in midcentury and declines thereafter, as in the A1 storyline, but with rapid change in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technologies. The emphasis is on global solutions to economic, social and environmental sustainability, including improved equity, but without additional climate initiatives. B2. The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to economic, social and environmental sustainability. It is a world with continuously increasing global population, at a rate lower than A2, intermediate levels of economic evelopment, and less rapid and more diverse technological change than in the B1 and A1 storylines. While the scenario is also oriented towards environmental protection and social equity, it focuses on local and regional levels. An illustrative scenario was chosen for each of the six scenario groups A1B, A1FI, A1T, A2, B1 and B2. All should be considered equally sound. The SRES scenarios do not include additional climate initiatives, which means that no scenarios are included that explicitly assume implementation of the United Nations Framework Convention on Climate Change or the emissions targets of the Kyoto Protocol. |
Other reports in this collection |