3.2 Terrestrial and Ocean Biogeochemistry: Update on Processes
3.2.1 Overview of the Carbon Cycle
3.2.2 Terrestrial Carbon Processes
3.2.2.1 Background
3.2.2.2 Effects of changes in land use and land management
3.2.2.3 Effects of climate
3.2.2.4 Effects of increasing atmospheric CO2
3.2.2.5 Effects of anthropogenic nitrogen deposition
3.2.2.6 Additional impacts of changing atmospheric chemistry
3.2.2.7 Additional constraints on terrestrial CO2 uptake
3.2.3 Ocean Carbon Processes
3.2.3.1 Background
3.2.3.2 Uptake of anthropogenic CO2
3.2.3.3 Future changes in ocean CO2 uptake
3.3 Palaeo CO2 and Natural Changes in the Carbon Cycle
3.3.1 Geological History of Atmospheric CO2
3.3.2 Variations in Atmospheric CO2 during Glacial/inter-glacial Cycles
3.3.3 Variations in Atmospheric CO2 during the Past 11,000 Years
3.3.4 Implications
3.4 Anthropogenic Sources of CO2
3.4.1 Emissions from Fossil Fuel Burning and Cement Production
3.4.2 Consequences of Land-use Change
3.5 Observations, Trends and Budgets
3.5.1 Atmospheric Measurements and Global CO2 Budgets
3.5.2 Interannual Variability in the Rate of Atmospheric CO2 Increase
3.5.3 Inverse Modelling of Carbon Sources and Sinks
3.5.4 Terrestrial Biomass Inventories
3.6 Carbon Cycle Model Evaluation
3.6.1 Terrestrial and Ocean Biogeochemistry Models
3.6.2 Evaluation of Terrestrial Models
3.6.2.1 Natural carbon cycling on land
3.6.2.2 Uptake and release of anthropogenic CO2 by the land
3.6.3 Evaluation of Ocean Models
3.6.3.1 Natural carbon cycling in the ocean
3.6.3.2 Uptake of anthropogenic CO2 by the ocean
3.7 Projections of CO2 Concentration and their Implications
3.7.1 Terrestrial Carbon Model Responses to Scenarios of Change in CO2 and Climate
3.7.2 Ocean Carbon Model Responses to Scenarios of Change in CO2 and Climate
3.7.3 Coupled Model Responses and Implications for Future CO2 Concentrations
3.7.3.1 Methods for assessing the response of atmospheric CO2 to different emissions athways and model sensitivities
3.7.3.2 Concentration projections based on IS92a, for comparison with previous studies
3.7.3.3 SRES scenarios and their implications for future CO2 concentration
3.7.3.4 Stabilisation scenarios and their implications for future CO2 emissions
3.7.4 Conclusions
Co-ordinating Lead Author
I.C. Prentice
Lead Authors
G.D. Farquhar, M.J.R. Fasham, M.L. Goulden, M. Heimann, V.J. Jaramillo, H.S.
Kheshgi, C. Le Quéré,
R.J. Scholes, D.W.R. Wallace
Contributing Authors
D. Archer, M.R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L.P. Bopp,
P. Bousquet, K. Caldeira, P. Ciais, P.M. Cox, W. Cramer, F. Dentener, I.G. Enting,
C.B. Field, P. Friedlingstein, E.A. Holland, R.A. Houghton, J.I. House, A. Ishida,
A.K. Jain, I.A. Janssens, F. Joos, T. Kaminski, C.D. Keeling, R.F. Keeling,
D.W. Kicklighter, K.E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E.
Maier-Reimer, A.C. Manning, R.J. Matear, A.D. McGuire, J.M. Melillo, R. Meyer,
M. Mund, J.C. Orr, S. Piper, K. Plattner, P.J. Rayner, S. Sitch, R. Slater,
S. Taguchi, P.P. Tans, H.Q. Tian, M.F. Weirig, T. Whorf, A. Yool
Review Editors
L. Pitelka, A. Ramirez Rojas
Other reports in this collection |