Climate Change 2001:
Working Group II: Impacts, Adaptation and Vulnerability
Other reports in this collection

3. Developing and Applying Scenarios

Contents

Executive Summary

3.1. Definitions and Role of Scenarios

3.1.1. Introduction
3.1.2. Function of Scenarios in Impact and Adaptation Assessment
3.1.3. Approaches to Scenario Development and Application

3.1.3.1. Exploratory Scenarios
3.1.3.2. Normative Scenarios
3.1.4. What Changes are Being Considered?

3.2. Socioeconomic Scenarios

3.2.1. Purpose
3.2.2. Representing Baseline Conditions
3.2.3. Constructing Socioeconomic Scenarios

3.2.3.1. Basic Drivers
3.2.3.2. Underlying Socioeconomic Drivers
3.2.3.3. Technological Change
3.2.3.4. Time Horizons
3.2.3.5. Spatial Resolution
3.2.3.6. Sectoral Scenarios
3.2.4. Use of Socioeconomic Scenarios
3.2.4.1. IPCC Special Report on Emissions Scenarios
3.2.4.2. UNEP Pakistan Country Study
3.2.4.3. UKCIP "Nonclimate Scenarios" for Climate Impact Assessment
3.2.4.4. ACACIA Scenarios for Europe
3.2.4.5. U.S. National Assessment

3.3. Land-Use and Land-Cover Change Scenarios

3.3.1. Purpose
3.3.2. Methods of Scenario Development

3.3.2.1. Baseline Data
3.3.2.2. Regional and Sector-Specific Approaches
3.3.2.3. Integrated Assessment Models
3.3.3. Types of Land-Use and Land-Cover Change Scenarios
3.3.3.1. Driving Forces of Change
3.3.3.2. Processes of LUC-LCC
3.3.3.3. Adaptation
3.3.4. Application and Interpretation of Scenarios and their Uncertainties

3.4. Environmental Scenarios

3.4.1. Purpose
3.4.2. CO2 Scenarios

3.4.2.1. Reference Conditions
3.4.2.2. Development and Application of [CO2] Scenarios
3.4.3. Scenarios of Acidifying Compounds
3.4.3.1. Reference Conditions
3.4.3.2. Development and Application of Sulfur and Nitrogen Scenarios
3.4.4. Scenarios of Tropospheric Ozone
3.4.4.1. Reference Conditions
3.4.4.2. Development and Application of Tropospheric Ozone Scenarios
3.4.5. UV-B Radiation Scenarios
3.4.5.1. Reference Conditions
3.4.5.2. Development and Application of UV-B Scenarios
3.4.6. Water Resource Scenarios
3.4.6.1. Reference Conditions
3.4.6.2. Development and Application of Water Resource Scenarios
3.4.7. Scenarios of Marine Pollution
3.4.7.1. Reference Conditions
3.4.7.2. Development and Application of Marine Pollution Scenarios

3.5. Climate Scenarios

3.5.1. Purpose
3.5.2. Methods

3.5.2.1. Incremental Scenarios for Sensitivity Studies
3.5.2.2. Analog Approaches
3.5.2.3. Use of Climate Model Outputs
3.5.3. Baseline Climatologies
3.5.3.1. Baseline Period
3.5.3.2. Sources and Characteristics of Data
3.5.4. Construction of Scenarios
3.5.4.1. Choosing Variables of Interest
3.5.4.2. Selecting GCM Outputs
3.5.4.3. Constructing Change Fields
3.5.4.4. Spatial Scale of Scenarios
3.5.4.4.1. Simple methods
3.5.4.4.2. Regional climate modeling
3.5.4.4.3. Statistical methods
3.5.4.5. Temporal Resolution (Mean versus Variability)
3.5.4.6. Incorporation of Extremes in Scenarios
3.5.4.7. Surprises: Low-Probability, High-Impact Events
3.5.5. Uncertainties of Climate Scenarios

3.6. Sea-Level Rise Scenarios

3.6.1. Purpose
3.6.2. Baseline Conditions
3.6.3. Global Average Sea-Level Rise
3.6.4. Regional Sea-Level Rise
3.6.5. Scenarios Incorporating Variability
3.6.6. Application of Scenarios

3.6.6.1. Simple Scenarios
3.6.6.2. Projected Ranges
3.6.6.3. Risk and Integrated Assessment

3.7. Representing Interactions in Scenarios and Ensuring Consistency

3.7.1. Introduction
3.7.2. Representing Processes and Interactions in Scenarios

3.7.2.1. Generally Considered Interactions
3.7.2.2. Less Considered Interactions
3.7.2.3. Rarely Considered Interactions
3.7.3. Tools Capable of Addressing Interactions
3.7.4. Problems of Compatibility between Scenarios

3.8. Scenarios of the 21st Century

3.8.1. SRES Storylines and Emissions Scenarios
3.8.2. Implications of SRES Scenarios for Atmospheric Composition and Global Climate
3.8.3. Implications of SRES Scenarios for Regional Mean Climate

3.8.3.1. Regional Information from AOGCMs
3.8.3.2. Regional Climate Characterizations
3.8.4. Stabilization Scenarios
3.8.5. Scenarios of Changes in Climate Variability and Extreme Events

3.9. State of the Science and Future Needs for Scenario Development

3.9.1. Well-Developed Features
3.9.2. Deficiencies in Knowledge and Future Needs

References

Timothy R. Carter (Finland) and Emilio L. La Rovere (Brazil)

Lead Authors:
R.N. Jones (Australia), R. Leemans (The Netherlands), L.O. Mearns (USA), N. Nakicenovic (Austria), A.B. Pittock (Australia), S.M. Semenov (Russian Federation), J. Skea (UK)

Contributing Authors:
S. Gromov (Russian Federation), A.J. Jordan (UK), S.R. Khan (Pakistan), A. Koukhta (Russian Federation), I. Lorenzoni (UK), M. Posch (The Netherlands), A.V. Tsyban (Russian Federation), A. Velichko (Russian Federation), N. Zeng (USA)

Review Editors:
Shreekant Gupta (India) and M. Hulme (UK)



Other reports in this collection