CO2 concentration trends and budgets
Before the Industrial Era, circa 1750, atmospheric carbon dioxide (CO2)
concentration was 280 ± 10 ppm for several thousand years. It has risen
continuously since then, reaching 367 ppm in 1999.
The present atmospheric CO2 concentration has not been exceeded during
the past 420,000 years, and likely not during the past 20 million years. The
rate of increase over the past century is unprecedented, at least during the
past 20,000 years.
The present atmospheric CO2 increase is caused by anthropogenic emissions
of CO2. About three-quarters of these emissions are due to fossil
fuel burning. Fossil fuel burning (plus a small contribution from cement production)
released on average 5.4 ± 0.3 PgC/yr during 1980 to 1989, and 6.3 ±
0.4 PgC/yr during 1990 to 1999. Land use change is responsible for the rest
of the emissions.
The rate of increase of atmospheric CO2 content was 3.3 ±
0.1 PgC/yr during 1980 to 1989 and 3.2 ± 0.1 PgC/yr during 1990 to 1999.
These rates are less than the emissions, because some of the emitted CO2
dissolves in the oceans, and some is taken up by terrestrial ecosystems. Individual
years show different rates of increase. For example, 1992 was low (1.9 PgC/yr),
and 1998 was the highest (6.0 PgC/yr) since direct measurements began in 1957.
This variability is mainly caused by variations in land and ocean uptake.
Statistically, high rates of increase in atmospheric CO2 have occurred
in most El Niño years, although low rates occurred during the extended
El Niño of 1991 to 1994. Surface water CO2 measurements from
the equatorial Pacific show that the natural source of CO2 from this
region is reduced by between 0.2 and 1.0 PgC/yr during El Niño events,
counter to the atmospheric increase. It is likely that the high rates of CO2
increase during most El Niño events are explained by reductions in land
uptake, caused in part by the effects of high temperatures, drought and fire
on terrestrial ecosystems in the tropics.
Land and ocean uptake of CO2 can now be separated using atmospheric
measurements (CO2, oxygen (O2) and 13CO2).
For 1980 to 1989, the ocean-atmosphere flux is estimated as -1.9 ± 0.6
PgC/yr and the land-atmosphere flux as -0.2 ± 0.7 PgC/yr based on CO2
and O2 measurements (negative signs denote net uptake). For 1990
to 1999, the ocean-atmosphere flux is estimated as -1.7 ± 0.5 PgC/yr
and the land-atmosphere flux as -1.4 ± 0.7 PgC/yr. These figures are
consistent with alternative budgets based on CO2 and 13CO2
measurements, and with independent estimates based on measurements of CO2
and 13CO2 in sea water. The new 1980s estimates are also consistent
with the ocean-model based carbon budget of the IPCC WGI Second Assessment Report
(IPCC, 1996a) (hereafter SAR). The new 1990s estimates update the budget derived
using SAR methodologies for the IPCC Special Report on Land Use, Land Use Change
and Forestry (IPCC, 2000a).
The net CO2 release due to land-use change during the 1980s has been
estimated as 0.6 to 2.5 PgC/yr (central estimate 1.7 PgC/yr). This net CO2
release is mainly due to deforestation in the tropics. Uncertainties about land-use
changes limit the accuracy of these estimates. Comparable data for the 1990s
are not yet available.
The land-atmosphere flux estimated from atmospheric observations comprises the
balance of net CO2 release due to land-use changes and CO2
uptake by terrestrial systems (the “residual terrestrial sink”). The residual
terrestrial sink is estimated as -1.9 PgC/yr (range -3.8 to +0.3 PgC/yr) during
the 1980s. It has several likely causes, including changes in land management
practices and fertilisation effects of increased atmospheric CO2
and nitrogen (N) deposition, leading to increased vegetation and soil carbon.
Modelling based on atmospheric observations (inverse modelling) enables the
land-atmosphere and ocean-atmosphere fluxes to be partitioned between broad
latitudinal bands. The sites of anthropogenic CO2 uptake in the ocean
are not resolved by inverse modelling because of the large, natural background
air-sea fluxes (outgassing in the tropics and uptake in high latitudes). Estimates
of the land-atmosphere flux north of 30°N during 1980 to 1989 range from
-2.3 to -0.6 PgC/yr; for the tropics, -1.0 to +1.5 PgC/yr. These results imply
substantial terrestrial sinks for anthropogenic CO2 in the northern
extra-tropics, and in the tropics (to balance deforestation). The pattern for
the 1980s persisted into the 1990s.
Terrestrial carbon inventory data indicate carbon sinks in northern and tropical
forests, consistent with the results of inverse modelling.
East-west gradients of atmospheric CO2 concentration are an order
of magnitude smaller than north-south gradients. Estimates of continental-scale
CO2 balance are possible in principle but are poorly constrained
because there are too few well-calibrated CO2 monitoring sites, especially
in the interior of continents, and insufficient data on air-sea fluxes and vertical
transport in the atmosphere.
The global carbon cycle and anthropogenic CO2
The global carbon cycle operates through a variety of response and feedback mechanisms. The most relevant for decade to century time-scales are listed here.
Responses of the carbon cycle to changing CO2 concentrations
Feedbacks in the carbon cycle due to climate change
Other impacts on the carbon cycle
Modelling and projection of CO2 concentration
Process-based models of oceanic and terrestrial carbon cycling have been developed, compared and tested against in situ measurements and atmospheric measurements. The following are consistent results based on several models.
Two simplified, fast models (ISAM and Bern-CC) were used to project future CO2 concentrations under IS92a and six SRES scenarios, and to project future emissions under five CO2 stabilisation scenarios. Both models represent ocean and terrestrial climate feedbacks, in a way consistent with process-based models, and allow for uncertainties in climate sensitivity and in ocean and terrestrial responses to CO2 and climate.
Implications
CO2 emissions from fossil fuel burning are virtually certain to
be the dominant factor determining CO2 concentrations during the
21st century. There is scope for land-use changes to increase or decrease CO2
concentrations on this time-scale. If all of the carbon so far released by land-use
changes could
be restored to the terrestrial biosphere, CO2 at the end of the century
would be 40 to 70 ppm less than it would be if no such intervention had occurred.
By comparison, global deforestation would add two to four times more CO2
to the atmosphere than reforestation of all cleared areas would subtract.
There is sufficient uptake capacity in the ocean to incorporate 70 to 80% of
foreseeable anthropogenic CO2 emissions to the atmosphere, this process
takes centuries due to the rate of ocean mixing. As a result, even several centuries
after emissions occurred, about a quarter of the increase in concentration caused
by these emissions is still present in the atmosphere. CO2 stabilisation
at 450, 650 or 1,000 ppm would require global anthropogenic CO2 emissions
to drop below 1990 levels, within a few decades, about a century, or about two
centuries respectively, and continue to steadily decrease thereafter. Stabilisation
requires that net anthropogenic CO2 emissions ultimately decline
to the level of persistent natural land and ocean
sinks, which are expected to be small (<0.2 PgC/yr).
Other reports in this collection |