CLIMATE CHANGE 2001: MITIGATION APPENDICES

Ι

List of Authors and Reviewers

A. List of Co-ordinating Lead Authors, Lead Authors, Contributing Authors, and Review Editors¹

F. Ackerman	Tufts University, United States of America
A.O. Adegbulugbe	Obafemi Awolowo University, Nigeria
R.S. Agarwal	Indian Institute of Technology Delhi, India
D. Ahuja	Nat. Institute Advance Studies, India
G. Akumu	Climate Network Africa (CAN), Kenya
J. Alcamo	University of Kassel, Germany
M.A. Al-Moneef	King Saud University, Saudi Arabia
E. Alsema	University of Utrecht, Netherlands
M. J. Apps	Natural Resources Canada, Canada
H. Audus	International Energy Agency (IEA, Greenhouse Gas R&D Programme), United Kingdom
T. Banuri	Stockholm Environment Institute Boston, USA (Pakistan)
T. Barker	University of Cambridge, United Kingdom
R. Baron	International Energy Agency, France
S Barrett	London Business School, United Kingdom
I.A. Bashmakov	Tsentr po Effektivnomu Ispolzovanlu Energii, Russian Federation
J. de Beer	Ecofys, Netherlands
S. Bernow	Tellus Institute, United States of America
L.S. Bernstein	International Petroleum Industry Environmental Conservation Association (IPIECA),
L.S. Demstem	United States of America
D.K. Biswas	Ministry of Environment & Forests, India
K. Blok	Ecofys, Netherlands
C. Bohringer	Institute of Energy, Economics and the Rational Use of Energy, Germany
P. Bohm	Stockholm University, Sweden
R.K. Bose	Tata Energy Research Institute (TERI), India
D.H. Bouille	Instituto de Economía Energética asociado a Fundación Bariloche (IDEE), Argentina
J. Byrne	University of Delaware, United States of America
E. Calvo	Comision Nac.de Cambio Clim., Consejo Nac. del Amb., Peru
P. Capros	University of Athens, Greece
C. Carraro	University of Venice, Italy
C. Cerri	University of Venice, hary Universidade de Sao Paolo, Brazil
M.J. Chadwick	United Kingdom
R. Christ	IPCC Secretariat, Switzerland (Austria)
J.M. Christensen	Risoe National Laboratory, Denmark
O. Christophersen	Ministry of Environment, Norway
L. A. Cifuentes	Catholic University of Chile, Chile
R. Costanza	University of Maryland, United States of America
P.J. Crabbe	University of Ottowa, Canada
P. Criqui	Institut d'Economie et de Politique de l'Energie; Centre National de la Recherche
1. Cliqui	Scientifique (IEPE-CNRS), France
O.R. Davidson	University of Cape Town, South Africa (Sierra Leone)
G.R. Davis	Shell International, United Kingdom
D.L. Davis	Carnegie Mellon University, United States of America
J. Davison	IEA Greenhouse Gas R&D Programma, United Kingdom
A. Dearing	World Business Council for Sustainable Development (WBCSD), Switzerland (UK)
e	Hydrometeorological Institute, Albania
E. Demiraj Bruci	
B. Dijkstra	University of Heidelberg, Germany (Netherlands)
T. Downing	University of Oxford, United Kingdom (USA) Pacific Northwest National Laboratory, United States of America
J. Edmonds B.S. Fisher	Pacific Northwest National Laboratory, United States of America
	Abare, Australia Expon Research and Engineering Co. United States of America
B.P. Flannery E. Fortin	Exxon Research and Engineering Co., United States of America
P. Freund	Congrès International des Réseaux Electriques de Distribution (CIRED), France
1.110010	International Energy Agency (IEA, Greenhouse Gas R&D Programme), United Kingdom

¹ Country in parenthesis: citizenship of contributor

T. Fujimori	Japan Forest Technical Ass., Japan
C. Gay-Garcia	Centro de Ciencias de la Atmosfere, Universidad Nacional Autonoma de Mexico (UNAM),
•	Mexico
L.J. Geng	United Nations Development Programme (UNDP), Peru
A. Golub	Center for Environmental Economics, Russian Federation
LH. Goulder	Stanford University, United States of America
D.L. Greene	Oak Ridge National Laboratory, United States of America
K. Gregory	Centre for Business and the Environment, United Kingdom
M. Grubb	Imperial College of Science, Technology and Medicine, United Kingdom
S. Gupta	Tata Energy Research Institute (TERI), India
E.F. Haites	Margaree Consultants Inc., Canada
D.O. Hall	King's College London/University of London, United Kingdom
K. Halsnaes	Riso National Laboratory, Denmark
J. Harnisch	Ecofys, Germany
T.C. Heller	Stanford University, United States of America
D. Herbert	University of British Colombia, Canada
O. Hohmeyer	University of Flensburg, Germany
E. Holt	Climate Technology Initiative, United States of America
J.C. Hourcade	Congrès International des Réseaux Électriques de Distribution (CIRED); Centre National
J.C. Hourcade	e
	de la Recherche Scientifique (CNRS); École des Hautes Études en Sciences Sociales
TT T	(EHESS), France
H. Imura	Kyushu University, Japan
H. Ishitani	Graduate School of Engineering, University of Tokyo, Japan
A. B. Jaffe	Brandeis University, United States of America
G. Jannuzzi	Universidade Estadual de Campinas (UNICAMP), Brazil
H.H. Janzen	Agriculture and Agri-Food Canada, Canada
T. Jaszay	Technical University of Budapest, Hungary
C.J. Jepma	University of Groningen, Netherlands
M. Jefferson	Global Energy & Environmental Consultants, United Kingdom
K. Jiang	Energy Research Institute, China
E. Jochem	Frauhofer Institute for Systems and Innovation Research, Germany
R.O. Jones	American Petroleum Institute, United States of America
S. Kartha	Tellus Institute, United States of America
T. Kashiwagi	Tokyo University of Agriculture & Technology, Japan
P.E. Kauppi	University of Helsinki, Finland
D. Keith	Carnegie Mellon University, United States of America
N. Keohane	Harvard University, United States of America
A.M. Khan	International Atomic Energy Agency, Austria
H.S. Kheshgi	Exxon Research & Engineering Company, United States of America
A, Khosla	Development Alternatives, India
A. Kollmus	Tufts University Boston, USA (Switzerland)
L. A. Kozak	Southern Company Services, United States of America
O.N. Krankina	Oregon State University, United States of America (Russian Federation)
A.J. Krupnick	Resources for the Future, United States of America
L. Kuijpers	Technical University Eindhoven, Netherlands
S. Kverndokk	Frischsenteret / Frisch Centre, Norway
A. Lanza	International Energy Agency, France (Italy)
E. Lebre la Rovere	Federal University of Rio de Janeiro, Brazil
H. Lee	Korea Energy Economics Institute, South Korea
R. Lempert	Organization for Research and Development (RAND), United States of America
S.J. Lennon	ESKOM Engineering, South Africa
M. Levine	Lawrence Berkeley National laboratory, United States of America
C. Li	Complex Systems Research Center, United States of America
J. Li	Energy Research Institute, China
J. Liski	European Forest Institute, Finland
L. Lorentsen	Ministry of Finance, Norway
R. Loulou	McGill University, Canada
IX. LOUIOU	webin University, Calada

W.R. Makundi Lawrence Berkeley Laboratory/University of California, United States of America (Tanzania) A.J.G. Manders Centraal Planbureau (CPB), Netherlands A. Markandya University of Bath, United Kingdom G. Marland Oak Ridge Nat. Laboratory, United States of America O. Masera Ceruti Instituto de Ecologia, Universidad Nacional Autonoma de Mexico (UNAM), Mexico Kyoto University, Japan Y. Matsuoka D. L. Mauzerall Princeton University, United States of America R. S. Maya Southern Center for Energy and Environment, Zimbabwe M. McFarland DuPont Fluoroproducts, United States of America National Institute for Public Health and the Environment (RIVM), Netherlands B. Metz Potsdam Institute For Climate Impact Research, Germany I. Mever K.M. Meyer-Abich Universitaet Essen, Germany L. Michaelis Oxford Centre for the Environment Ethics & Society (OCEES), United Kingdom E. Mills Lawrence Berkeley National Laboratory, United States of America K. Minami National Institute of Agro-Environmental Sciences, Japan Japan Automobile Research Institute (JARI), Japan K. Minato Hadley Centre, United Kingdom **J.F.B.** Mitchell J. P. Montero Catholic University of Chile, Chile W.R. Moomaw The Fletcher School of Law and Diplomacy, United States of America World Business Council for Sustainable Development, Switzerland D. Moorcroft J. R. Moreira Biomass Users Network (BUN), Brazil S. Mori Science University of Tokyo, Japan T. Morita National Institute for Environmental Studies, Japan M. Munasinghe University of Colombo, Sri Lanka Sophia University, Japan S. Murase M.J. Mwandosya Center for Energy, Environment, Science & Technology, Tanzania ALTERRA Research Institute of the Green Environment, Netherlands G.-J. Nabuurs A. Najam Boston University, United States of America (Pakistan) Mitsui & Co. Ltd., Japan T. Nakata N. Nakicenovic International Institute for Applied Systems Analysis (IIASA), Austria Russian Academy of Science, Russian Federation E. Nikitina Institute for Social Studies, Netherlands J.B. Opschoor R.K. Pachauri Tata Energy Research Institute (TERI), India Chinese Academy of Social Sciences/TSU Working Group III IPCC, Netherlands (China) J. Pan J.K. Parikh Indira Gandhi Institute of Development Research (IGIDR), India Indira Gandhi Institute of Development Research (IGIDR), India K. Parikh Grade. Peru A. Pasco-Font J. Pershing International Energy Agency, France (USA) Organization for Economic Cooperation and Development (OECD), France (Poland) G Peszko Centro de Investigaciones de Economía Mundial (CIEM), Cuba R. Pichs-Madruga L. Pinguelli Rosa Federal University Rio de Janeiro, Brazil Pacific Northwest National Laboratories, United States of America H.M. Pitcher W. Pizer Resources for the Future, United States of America S. E. Plotkin Argonne National Laboratory, United States of America Centre For Wind Energy Technology (C-WET), India N. S. Prasad L. K. Price Lawrence Berkeley National Laboratory, United States of America Bangladesh Centre for Advanced Studies (BCAS), Bangladesh A. Rahman A Rana National Institute for Environmental Studies, Japan (India) United States Environmental Protection Agency (US EPA), United States of America S. Rand Stockholm Environment Institute Boston, United States of America P. D. Raskin N. H. Ravindranath Indian Institute of Science, India Colombia University, United States of America S. Rayner W. Razali Wan Mohd Forest Research Institute Malaysia (FRIM), Malaysia Department of Agriculture, United States of America J. Reilly United States Environmental Protection Agency (US EPA), United States of America W.J. Rhodes International Institute for Applied Systems Analysis (IIASA), Austria (Iran) K. Riahi

R.G. Richels J.B. Robinson R.A. Roehrl H.H. Rogner G. Roos K.E. Rosendahl W. Sachs A. Sagar P.H.N. Saldiva D. A. Sankovski J. A. Sathaye A. Schafer R.A. Sedjo H. Sejenovich R. Seroa da Motta R. Sharma S. Sharma M. Shechter J. Shogren S. B. Shrikanth P. R. Shukla R.E.H. Sims V. I. Sokolov B. Solberg L. Srivastava R.N. Stavins R.T.M. Sutamihardja R Swart K. Tanaka T. Taniguchi M.T. Tolmasquim J. Torres Martinez T. Taylor F. L. Toth J. Turkson C.R. Turner A. Underdal A. Verbruggen D.G. Victor A. Villavicencio M.J. Villena H.J.M. de Vries Y. Wake A. C. Walter J.P. Weyant P. Wilcoxen J.J. Wise E. Worrell H. Xu M. Yamaguchi K. Yamaji F. D. Yamba F. Yamin J. R. Ybema R. Ye G. Yohe T. Zhang

Electric Power Research Institute (EPRI), United States of America University of British Columbia, Canada International Institute for Applied Systems Analysis (IIASA), Austria International Atomic Energy Agency, Austria ESKOM Engineering, South Africa Statistics Norway, Norway Wuppertal Institute, Germany Harvard University, United States of America (India) Harvard School of Public Health, United States of America ICF Consulting, United States of America Lawrence Berkeley Nat. Laboratory, United States of America Massachusetts Institute of Technology, United States of America Resources for the Future, United States of America Fundacion Barilloche, Argentina Instituto de Pesquisa Econômica Aplicada (IPEA), Brazil United Nations Environment Programme (UNEP), Kenya (India) Tata Energy Research Institute (TERI), India University of Haifa, Israel University of Wyoming, United States of America Tata Energy Research Institute (TERI), India Indian Inst. of Management, India Massey University, New Zealand Russian Academy of Sciences, Russian Federation Norwegian Forest Research Institute, Norway Tata Energy Research Institute (TERI), India Harvard University, United States of America Ministry of Global Environment, Indonesia National Institute for Public Health and the Environment (RIVM), Netherlands Global Industrial and Social Progress Research Institute (GISPRI), Japan Global Industrial and Social Progress Research Institute (GISPRI), Japan Cidade Universitaria (Federal University of Rio de Janeiro), Brazil Ministerio de Ciencia, Cuba University of Bath, United Kingdom Potsdam Institute for Climate Impact Research, Germany RISOE National Laboratory, Denmark (Ghana) ESKOM Engineering, South Africa Centre for Advanced Study, Norway University of Antwerp, UFSIA, Belgium Council on Foreign Relations, United States of America RISOE National Laboratory, Denmark (Ecuador) Cambridge University, United Kingdom (Chile) National Institute for Public Health and the Environment (RIVM), Netherlands Keio University, Japan State University of Campinas, Brazil Stanford University, United States of America University of Texas, United States of America Mobil Oil Corporation, United States of America Lawrence Berkeley National Laboratory, United States of America (Netherlands) Energy Research Institute, China Keio University, Japan University of Tokyo, Japan University of Zambia (Lusaka), Zambia University of London, United Kingdom (Pakistan) ECN Policy Studies, Netherlands State Environmental Protection Administration, China Wesleyan University, United States of America Tsinghua University, China

Z. Zhang P. Zhou	University of Groningen, Netherlands Energy, Environment, Computer and Geophysical Applications Group (EECG Consultants),
	Botswana
D. Zhou	Energy Research Institute, China
F. Zhou	Energy Research Institute, China

B. List of Reviewers

Armenia

K. Ter-Ghazaryan Ministry of Nature Protection

Australia

I. Jones	University of Sydney
A. Fuller	Australian Government

Austria

B. Amon	University of Agricultural Sciences
G. Klaassen	International Institute for Applied Systems Analysis
K. Radunsky	Federal Environment Agency
L. Schrattenholzer	International Institute for Applied Systems Analysis
D.M. Tripold	Federal Ministry for Agriculture, Forestry, Environment and Water Management

Belgium

P. Boeckx	Gent University
J. Franklin	Solvay Research and Technology
D. Seed	BNFL

Benin

E. Ahlonsou

Service Meteorologique National

Brazil

J. Goldemberg	University of Sao Paolo
R. Schaeffer	Federal University of Rio de Janeiro
M. Silvia Muylaert	Federal University of Rio de Janeiro
M. Tolmasquim	Federal University of Rio de Janeiro
S. Trindade	SE_T International Ltd.

Canada

R. Desjardins	Agriculture and Agri-Food Canada
P. Edwards	Meteorological Service of Canada
M. Everell	Government of Canada
L. Gagnon	Hydro-Quebec

List of Authors and Reviewers

R. Grafton	University of Ottawa
P. Hall	Canadian Forest Service
B. Jacques	Environment Canada
N. Macaluso	Environment Canada
D. MacDonald	Alberta Department of Environment
J. Masterton	Government of Canada
J. Robinson	University of British Columbia
W. Smith	Environment Canada
J. Stone	Environment Canada

China

E. Lin	Chinese Academy of Agricultural Sciences
H. Xu	Energy Research Institute of SDPC
T. Teng	Chinese Academy of Social Sciences
Y. Xu	Tsinghua University
T. Zhang	Tsinghua University

Cuba

M. Castellanos	Ministry of Science, Technology and Environment
R. Pichs-Madruga	Centre for World Economy Studies/ Vice-Chair IPCC WG III
J. Torres	Ministry of Science, Technology and Environment
G. Trueba	Ministry of Science, Technology and Environment

Finland

P. Hakkila	VTT Energy
R. Korhonen	VTT Energy
P. Kortelainen	Finnish Environment Institute
R. Pipatti	VTT Energy
I. Savolainen	VTT Energy

France

Elf-Atochem SA
Electricité de France
Helio International
Agency for the Environment and Energy Resources
Gaz de France
Ministère de l'Aménagement du Territoire et de l'Environnement
Interministerial Task Force on Climate Change
Hamburg Institute for International Economics
Ecole Polytechnique

Germany

H-J. Ahlgrimm	Federal Agricultural Research Center
P. Burschel	Technical University Munich
A. Freibauer	University of Stuttgart
E. Jochem	Fraunhofer Institut für Systemtechnik und Innovationsforschung (FhG – ISI)
H. Kohl	Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

K. Kristof M. Lindner K. Lochte P. Radgen S. Ramesohl B. Schärer S. Sicars F. Toth M. Treber M. Weber	Wuppertal Institute for Climate Environment Energy Potsdam Institute for Climate Impact Research Baltic Sea Research Institute Warnemünde Fraunhofer Institute Systems and Innovations Research Wuppertal Institute for Climate Environment Energy Umweltbundesamt Sitec Potsdam Institute for Climate Impact Research Germanwatch e.V. Technical University Munich
India	
K. Chatterjee M. Murty	Climate Change Centre Institute of Economic Growth
Italy	
M. Contaldi A. Raudner	National Environmental Protection Agency National Environmental Protection Agency
Japan	
A. Amano	Kwansei Gakuin University
K. Asakura	Central Research Institute of Electric Power Industry
S. Baba	Ministry of Foreign Affairs
Y. Fujii	University of Tokyo
N. Goto	University of Tokyo
T. Hakamata	National Institute of Agro-Environmental Sciences
H. Hasuike	The Institute of Applied Energy
Y. Hosoya	The Tokyo Electric Power Company
T. Imai	The Kansai Electric Power Company National Institute for Resources and Environment
A. Inaba M. Inoue	Global Environmental Affairs Office, Ministry of Economy, Trade and Industry
Y. Ishida	Global Industrial and Social Progress Research Institute
T. Jung	Institute for Global Environmental Strategies
H. Kazuno	Climate Change Division, Ministry of Foreign Affairs
M. Kokitsu	Global Industrial and Social Progress Research Institute
H. Kuraya	Office of Research and Information, Ministry of the Environment
N. Matsuo	Global Industrial and Social Progress Research Institute / Institute for Global Environmental Strategies
K. Nakane	Hiroshima University
I. Nouchi	National Institute of Agro-Environmental Sciences
Y. Ogawa	Institute of Energy Economics
A. Rana	National Institute for Environmental Studies
I. Sadamori	Global Industrial and Social Progress Research Institute
T. Saito	Senshu University
S. Sato	Chubu Electric Power Company
R. Shimizu	Global Environment Division, Ministry of Foreign Affairs
N. Soto	University of Tokyo

Global Industrial and Social Progress Research Institute

Global Industrial and Social Progress Research Institute

Ministry of Agriculture, Forestry and Fishery

University of Tsukuba

- N. Soto K. Tanaka
- Y. Tanaka
- Y. Uchiyama
- H. Watanabe

K. Yamaji	University of Tokyo
K. Yamazaki	Chubu Electric Power Company
S. Yokoyama	National Institute for Resources and Environment

Kenya

Climate Network Africa
Ministry of Tourism, Trade and Industry
Ministry of Energy
University of Nairobi
Consultant
Kenya Meteorological Department
KEFRI
Moi University

Korea

J-S. Lim

Kwangwoon University

Mexico

N. Montes	National Autonomous University of Mexico
C. Sheinbaum Pardo	National Autonomous University of Mexico
A. de la Vega Navarro	National Autonomous University of Mexico

Netherlands

G. Addink	Utrecht University
A. Baede	Royal Netherlands Meteorological Institute
M. Beeldman	Netherlands Energy Research Foundation
M. Berk	National Institute for Public Health and the Environment
H. Bersee	Ministry of Housing, Spatial Planning and the Environment
M. Davidson	Centre for Energy Conservation and Environmental Technology Delft
D. Gielen	Netherlands Energy Research Foundation
B. Hare	Greenpeace International
J. van der Jagt	Utrecht University
K. Jardine	Greenpeace International
T. Kram	Netherlands Energy Research Foundation
K. Mallon	Greenpeace International
B. Metz	IPCC WGIII Co-chair
L. Meyer	Ministry of Housing, Spatial Planning and the Environment
J. Pan	IPCC WGIII TSU
S. van Rooijen	Netherlands Energy Research Foundation
J. van Soest	Centre for Energy Conservation and Environmental Technology Delft
R. Swart	IPCC WGIII TSU
R. Tol	Vrije Universiteit Amsterdam
A. Webb	Netherlands Agency for Energy and the Environment
E. Woerdman	University of Groningen
R. Ybema	Netherlands Energy Research Foundation

New Zealand

J. Barnett	University of Canterbury
S. Kerr	Motu Economic Research
P. MacLaren	New Zealand Forest Research Institute Ltd.
D. Payton	Ministry of Foreign Affairs and Trade
H. Plume	Ministry for the Environment
P. Read	Massey University
A. Reisinger	Ministry for the Environment
R. Sims	Massey University
M. Storey	Agriculture New Zealand
A. Stroombergen	Infometrics Consulting

Nigeria

G. Ayoola University of Agriculture

Norway

K. Alfsen	Center for International Climate and Environmental Research Oslo (CICERO)
T. Asphjell	The Norwegian Pollution Control Authority (SFT)
K. Brekke	Statistics Norway
O. Christophersen	Ministry of Environment
T. Gulowsen	Greenpeace Nordic
P. Haugan	University of Bergen
H. Kolshus	Centre for International Climate and Environmental Research Oslo (CICERO)
H. Leffertstra	The Norwegian Pollution Control Authority (SFT)
L. Mathiesen	Norwegian School of Economics and Business Administration
S. Mylona	The Norwegian Pollution Control Authority (SFT)
P. Neksa	Foundation for Scientific and Industrial Research
M. Pettersen	The Norwegian Pollution Control Authority (SFT)
J. Petterson	Foundation for Scientific and Industrial Research
A. Thorvik	Statoil
A. Torvanger	Centre for International Climate and Environmental Research Oslo (CICERO)

Poland

H. Gay

EnergSys Ltd.

Portugal

S. Dessai	Euronatura
P. Martins Barata	Euronatura
E. de Oliveira Fernandes	University of Porto

Saudi Arabia

M. Al-Sabban

Government of Saudi Arabia

S. Boehmer-Christiansen

University of Hull

Singapore

J. Ruitenbeek	Economy and Environment Program for Southeast Asia
Slovenia	
A. Kranjc Z. Stojic	Ministry of Environment, Hydrometeorological Institute EkoNova
South Africa	
G. DownesW. PoultonC. TurnerM. Veeran-RambharosB. VredeM. de Wit	ESKOM ESKOM ESKOM Generation Environmental Management Eskom CSIR Environmentek
Spain	
F. Hernández	Consejo Superior de Investigaciones Científicas, Institute of Economics and Geography
Sweden	
U. Dethlefsen L. Eidenstein C. Ekström S-O. Ericson H. Fernqvist K. Maunsbach B. Svensson	Vattenfall Utveckling AB Vattenfall Utveckling AB Vattenfall Utveckling AB Vattenfall Utveckling AB Volvo Car Corporation Vattenfall Utveckling AB Vattenfall Utveckling AB
Switzerland	
C. Albrecht O. Bahn J. Romero	Swiss Secretariat for Economic Affairs Paul Scherrer Institute Office fédéral de l'environnement, des forêts et du paysage
Ukraine	
V. Demkin	Kyiv Mohyla Academy
United Kingdom	
H. Audus P. Ashford K. Begg W. Bjerke	IEA Greenhouse Gas R&D Programme Caleb Management Services University of Surrey International Primary Aluminium Institute

D. Colbourne	Calor Gas Ltd
E. Cornish	The Uranium Institute
P. Costa	EcoSecurities Ltd.
J. Davidson	IEA Greenhouse Gas R&D Programme
N. Eyre	Energy Saving Trust
P. Freund	IEA Greenhouse Gas R&D Programme
J. Gale	IEA Greenhouse Gas R&D Programme
J. Grant	International Petroleum Industry Environmental Conservation Association
M. Grubb	Imperial College
M. Harley	English Nature / Countryside Council for Wales / Scottish Natural Heritage
S. Holloway	British Geological Survey
R. Knapp	World Coal Institute
G. Leach	Stockholm Environment Institute
N. Mabey	World Wide Fund for Nature
F. MacGuire	Friends of the Earth England, Wales and Northern Ireland
A. McCulloch	University of Bristol
M. Mann	Department of Environment, Transport and the Regions
A. Meyer	Global Commons Institute
B. Müller	Oxford Institute for Energy Studies
A. Murphy	Shell International
S. Parkinson	University of Surrey
J. Skea	Policy Studies Institute
M. Tight	University of Leeds
D. Warrilow	Department of the Environment, Transport and the Regions

USA

F. Ackerman	Tufts University		
R. Alig	Forestry Sciences Laboratory		
S. Archer	National Science and Technology Center		
K. Arrow	Stanford University		
C. Artusio	Office for Science and Technology Policy		
P. Backlund	Office for Science and Technology Policy		
S. Baldwin	Office for Science and Technology Policy		
W. Barbour	Environmental Protection Agency		
D. Bassett	US Department of Energy		
D. Bauer	National Research Council		
S. Bernow	Tellus Institute		
G. Blomquist	University of Kentucky		
E. Boedecker	US Department of Energy		
E. Boes	National Renewable Energy Laboratory		
G. Boyd	Argonne National Laboratory		
M. Brown	Oak Ridge National Laboratory		
S. Brown	Winrock International		
C. Campbell	Petroplan Inc.		
R. Caton	Alchemy Consulting Inc.		
F. de la Chesnaye	US Environmental Protection Agency		
D. Clark	University of California		
B. DeAngelo	Environmental Protection Agency		
S. DeCanio	University of California		
M. Delmas	University of California		
J. Dowd	US Department of Energy		
R. Downs	Office of Science and Technology Policy		
L. Drake	Massachusetts Institute of Technology		
R. Eckaus	Massachusetts Institute of Technology		
A. Farrell	Carnegie Mellon University		

K. Fisher-Vanden	Dartmouth College
B. Flannery	Exxon Research and Engineering Co.
L. Flejzor	US Department of State
R. Fleagle	University of Washington
J. Frankel	Harvard University
K. Friedman	US Department of Energy
R. Friedman	Heinz Center
G. Frisvold	University of Arizona
W. Fulkerson	University of Tennessee
W. Gore	Boehringer Ingelheim Pharmaceuticals Inc.
J. Gowdy	Rensselaer Polytechnic Institute
K. Green	US Department of Transportation
L. Greening	Consultant
B. Haddad	University of California
S. Hadley	Oak Ridge National Laboratory
J. Hammitt	Harvard School of Public Health
D. Hanson	Argonne National Laboratory
M. Hanson	Energy Center of Wisconsin
D. Harrison	National Economic Research Associates
H. Herzog	Massachusetts Institute of Technology
E. Holt	US Department of Energy
J. Hrubovcak	US Department of Agriculture
H. Jacoby	Massachusetts Institute of Technology
J. Johnston	ExxonMobil Research and Engineering Company
P. Karpoff	US Department of Energy
J. Kerstetter	Washington State University
G. Kelly	Global Climate Coalition
H. Khesghi	ExxonMobil Research and Engineering Company
R. Kopp	Resources for the Future
L. Kozak	Southern Company Services
F. Krause	International Project for Sustainable Energy Paths
S. Laitner	Environmental Protection Agency
H. Lee	Harvard University
P. Lydon	Berkeley University
T. Lyon	Indiana University
T. Marx	General Motors Corporation
B. McCarl	Texas A&M University
S. McDonald	Pacific Northwest National Laboratory
B. McNutt	US Department of Energy
R. Mendelsohn	Yale School of Forestry and Environmental Studies
H. Miller	Air Transportation Associaton of America, Inc.
J. Miotke	Director Office of Global Change, US Department of State
J. Moore	TA Engineering Inc.
R. Morgenstern	Resources for the Future
A. Mosier	US Department of Agriculture
T. Muir	Office of Science and Technology Policy
B. Murry	Center for Economics Research
R. Newell	Resources for the Future
A. Nicholls	Pacific Northwest National Laboratory
M. Offutt	White House Office of Science and Technology Policy
W. Orr	Prescott College, Nasa Program
P. O'Rourke	Sparber & Associates
W. Pizer	Resources for the Future
S. Plotkin	Argonne National Laboratory
R. Prince	US Department of Energy
P. Quinlan	Office of Science and Technology Policy
R. Randall	The Rainforest Regeneration Institute

704

J. Reilly	Massachusetts Institute of Technology
A. Rose	Penn State University
M. Rose	University of Michigan
N. Rosenberg	Pacific Northwest National Laboratory
M. Ross	University of Michigan
D. Rothman	Columbia University
M. Ruth	Boston University
A. Sanstad	Lawrence Berkeley National Laboratory
S. Schneider	Stanford University
K. Segerson	University of Connecticut
A. Serchuk	Center for Renewable Energy and Sustainable Technology
W. Shadis	TA Engineering Inc.
M. Sheehan	Osterberg & Sheehan
J. Sheffield	Oak Ridge National Laboratory / University of Tennessee
J. Shiller	Ford Motor Company
W. Short	National Renewable Energy Laboratory
J. Shortle	Penn State University
T. Siddiqi	Global Environment and Energy in the 21st century
L. Silverman	US Department of Energy
K. Skog	USDA Forest Products Laboratory
K. Smith	North Carolina State University
W. Smith	US Environmental Protection Agency
A. Solomon	Executive Office of the President
J. Solomon	Praxair Inc.
T. Terry	US Department of Energy
J. Tester	Massachusetts Institute of Technology
T. Tietenberg	Colby College
M. Toman	Resources for the Future
R. Tuccillo	Executive Office of the President
Th. Vanderspurt	ExxonMobil Research and Engineering Company
C. Walker	US Agency for International Development
M. Walsh	Oak Ridge National Laboratory
E. Watts	US Department of Energy
L. Weber	Office of Science and Technology Policy
M. Weiss	Massachusetts Institute of Technology
H. Wesoky	Federal Aviation Administration
N. Young	Air Transportation Association of America, Inc.

Venezuela

L. Pérez

Ministerio del Ambiente y de los Recursos Naturales / Ministerio de Energia y Minas

IGO/NGO

United Nations Educational, Scientific and Cultural Organisation	
International Energy Agency	
International Petroleum Industry Environmental Conservation Association	
Organisation of the Petroleum Exporting Countries	
Organisation for Economic Cooperation and Development	
International Civil Aviation Organisation	
Organisation of the Petroleum Exporting Countries	
Int'l Petroleum Industry Environmental Conservation Association	
Greenpeace International	
International Atomic Energy Agency	
International Atomic Energy Agency	

List of Authors and Reviewers

Greenpeace International
International Petroleum Industry Environmental Conservation Association
Organisation for Economic Co-operation and Development
International Energy Agency
FORATOM – European Atomic Forum
International Petroleum Industry Environmental Conservation Association
International Energy Agency
International Energy Agency

Π

Glossary

Glossary¹

AAs See assigned amounts.

AAU See *assigned amount unit*.

Activities Implemented Jointly (AIJ)

The pilot phase for *joint implementation*, as defined in Article 4.2(a) of the *United Nations Framework Convention on Climate Change*, that allows for project activity among developed countries (and their companies) and between developed and developing countries (and their companies). AIJ is intended to allow Parties to the *United Nations Framework Convention on Climate Change* to gain experience in jointly implemented project activities. There is no crediting for AIJ activity during the pilot phase. A decision remains to be taken on the future of AIJ projects and how they may relate to the Kyoto Mechanisms. As a simple form of tradable permits, AIJ and other market-based schemes represent important potential mechanisms for stimulating additional resource flows for the global environmental good. See also *Clean Development Mechanism*, and *emissions trading*.

Adaptation

Adjustment in natural or human systems to a new or changing environment. Adaptation to *climate change* refers to adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation.

Additionality

Reduction in *emissions* by *sources* or enhancement of removals by sinks that is additional to any that would occur in the absence of a Joint Implementation or a Clean Development Mechanism project activity as defined in the Kyoto Protocol Articles on Joint Implementation and the Clean Development Mechanism. This definition may be further broadened to include financial, investment, and technology additionality. Under *financial additionality*, the project activity funding shall be additional to existing Global Environmental Facility, other financial commitments of Parties included in Annex I, Official Development Assistance, and other systems of co-operation. Under investment additionality, the value of the Emissions Reduction Unit /Certified Emission Reduction Unit shall significantly improve the financial and/or commercial viability of the project activity. Under technology additionality, the technology used for the project activity shall be the best available for the circumstances of the host Party.

Administrative costs

The costs of activities of the project or sectoral activity directly related and limited to its short-term implementation. They include the costs of planning, training, administration, monitoring, etc.

Afforestation

Planting of new forests on lands that historically have not contained forests². See also *Deforestation* and *Deforestation*.

AIJ

See Activities Implemented Jointly.

Alliance of Small Island States (AOSIS)

The group was formed during the Second World Climate Conference in 1990 and comprises small island and low-lying coastal developing countries that are particularly vulnerable to the adverse consequences of *climate change*, such as sea level rise, coral bleaching, and the increased frequency and intensity of tropical storms. With more than 35 states from the Atlantic, Caribbean, Indian Ocean, Mediterranean, and Pacific, AOSIS share common objectives on environmental and sustainable development matters in the *UNFCCC* (*United Nations Framework Convention on Climate Change*) process.

Alternative development paths

Refer to a variety of possible scenarios for societal values and consumption and production patterns in all countries, including but not limited to a continuation of today's trends. In this Report, these paths do not include additional climate initiatives which means that no scenarios are included that explicitly assume implementation of the UNFCCC or the emission targets of the **Kyoto Protocol**, but do include assumptions about other policies that influence greenhouse gas emissions indirectly.

Alternative energy

Energy derived from non-fossil fuel sources.

Ancillary benefits

The ancillary, or side effects, of policies aimed exclusively at *climate change mitigation*. Such policies have an impact not only on *greenhouse gas emissions*, but also on resource use efficiency, like reduction in emissions of local and regional air pollutants associated with fossil fuel use, and on issues such as transportation, agriculture, *land-use* practices, employment, and fuel security. Sometimes these benefits are referred to as "ancillary impacts" to reflect that in some cases the benefits may be negative. From the perspective of policies directed at

¹ The terms that are independent entries in this glossary are highlighted in *bold and italics* in text as cross-references.

² For a discussion of the term *forest* and related terms such as *afforestation*, *reforestation*, and *deforestation* (*ARD*): see the IPCC Special Report on Land Use, Land-Use Change and Forestry, Cambridge University Press, 2000.

abating local air pollution, *greenhouse gas mitigation* may also be considered an ancillary benefit, but these relationships are not considered in this assessment. See also *co-benefits*.

Anthropogenic emissions

Emissions of *greenhouse gases*, *greenhouse gas* precursors, and aerosols associated with human activities. These include burning of *fossil fuels* for energy, *deforestation* and *land-use* changes that result in net increase in emissions.

Annex I countries/Parties

Group of countries included in Annex I (as amended in 1998) to the *United Nations Framework Convention on Climate Change*, including all the developed countries in the Organisation of Economic Co-operation and Development, and *Economies in transition*. By default, the other countries are referred to as *Non-Annex I countries*. Under Articles 4.2 (a) and 4.2 (b) of the Convention, Annex I countries commit themselves specifically to the aim of returning individually or jointly to their 1990 levels of *greenhouse gas emissions* by the year 2000. See also *Annex II*, *Annex B*, and *Non-Annex B countries*.

Annex II countries

Group of countries included in Annex II to the *United Nations Framework Convention on Climate Change*, including all developed countries in the Organisation of Economic Co-operation and Development. Under Article 4.2 (g) of the Convention, these countries are expected to provide financial resources to assist developing countries to comply with their obligations, such as preparing national reports. Annex II countries are also expected to promote the transfer of environmentally sound technologies to developing countries. See also *Annex I, Annex B, Non-Annex I*, and *Non-Annex B countries*.

Annex B countries/Parties

Group of countries included in Annex B in the *Kyoto Protocol* that have agreed to a target for their *greenhouse gas emissions*, including all the *Annex I countries* (as amended in 1998) but Turkey and Belarus. See also *Annex II*, *Non-Annex I*, and *Non-Annex B countries*/*Parties*.

AOSIS

See Alliance of Small Island States.

Assigned amounts (AAs)

Under the *Kyoto Protocol*, the total amount of *greenhouse gas emissions* that each *Annex B country* has agreed that its emissions will not exceed in the first commitment period (2008 to 2012) is the assigned amount. This is calculated by multiplying the country's total *greenhouse gas* emissions in 1990 by five (for the 5-year commitment period) and then by the percentage it agreed to as listed in Annex B of the Kyoto Protocol (e.g., 92% for the European Union; 93% for the USA).

Assigned amount unit (AAU)

Equal to 1 tonne (metric ton) of *CO₂-equivalent emissions* calculated using the *Global Warming Potential*.

Average cost

Total cost divided by the number of units of the item for which the cost is being assessed. With *greenhouse gases*, for example, it would be the total cost of a programme divided by the physical quantity of *emissions* avoided.

Banking

According to the *Kyoto Protocol* [Article 3 (13)], Parties included in Annex I to the *United Nations Framework Convention on Climate Change* may save excess *emissions* allowances or credits from the first commitment period for use in subsequent commitment periods (post-2012).

Barrier

A barrier is any obstacle to reaching a potential that can be overcome by a policy, programme, or measure.

Barrier removal costs

The costs of activities aimed at correcting market failures directly or at reducing the transactions costs in the public and/or private sector. Examples include costs of improving institutional capacity, reducing risk and *uncertainty*, facilitating market transactions, and enforcing regulatory policies.

Baseline

A non-intervention *scenario* used as a base in the analysis of intervention scenarios.

Benefit transfer

An application of monetary values from a particular valuation study to an alternative or secondary policy-decision setting, often in a geographic area other than the one in which the original study was performed.

Biofuel

A fuel produced from dry organic matter or combustible oils produced by plants. Examples of biofuel include alcohol (from fermented sugar), black liquor from the paper manufacturing process, wood, and soybean oil.

Biological options

Biological options for mitigation of climate change involves one or more of the three strategies: *conservation* - conserving an existing carbon *pool*, and thereby preventing *emissions* to the atmosphere; *sequestration* - increasing the size of existing carbon pools, and thereby extracting carbon dioxide from the atmosphere; and *substitution* - substituting biological products for *fossil fuels* or energy-intensive products, thereby reducing carbon dioxide emissions.

Biomass

The total mass of living organisms in a given area or volume; recently dead plant material is often included as dead biomass. Biomass can be used for fuel directly by burning it (e.g., wood), or indirectly by fermentation to alcohol (e.g., sugar) or extraction of combustible oils (e.g., soybeans).

Bottom-up models

A modelling approach that includes technological and engineering details in the analysis. See also *top-down models*.

Bubble

Article 4 of the *Kyoto Protocol* allows a group of countries to meet their target listed in *Annex B* jointly by aggregating their total *emissions* under one "bubble" and sharing the burden. The European Union nations intend to aggregate and share their emissions commitments under one bubble.

Cap

See emissions cap.

Capital costs

Costs associated with capital or investment expenditure on land, plant, equipment, and inventories. Unlike labour and operating costs, capital costs are independent of the level of output for a given capacity of production.

Capacity building

In the context of *climate change*, capacity building is a process of developing the technical skills and institutional capability in developing countries and *Economies in transition* to enable them to participate in all aspects of *adaptation* to, *mitigation* of, and research on climate change, and the implementation of the *Kyoto Mechanisms*, etc.

Carbon cycle

The term used to describe the flow of carbon in various forms (e.g., as *carbon dioxide*) through the atmosphere, ocean, terrestrial biosphere, and lithosphere.

Carbon dioxide (CO₂)

A naturally occurring gas, and also a by-product of burning *fossil fuels* and *biomass*, as well as *land-use* changes and other industrial processes. It is the principal anthropogenic *green-house gas* that affects the earth's radiative balance. It is the reference gas against which other *greenhouse gases* are measured and therefore has a *Global Warming Potential* of 1.

Carbon dioxide fertilization

The enhancement of the growth of plants as a result of increased atmospheric carbon dioxide concentration. Depending on their mechanism of photosynthesis, certain types of plants are more sensitive to changes in atmospheric carbon dioxide concentration. In particular, plants that produce a three-carbon compound (C_3) during photosynthesis; including most trees and agricultural crops such as rice, wheat, soybeans, potatoes and vegetables, generally show a larger

response than plants that produce a four-carbon compound (C_4) during photosynthesis; mainly of tropical origin, including grasses and the agriculturally important crops maize, sugar cane, millet and sorghum.

Carbon leakage

See leakage.

Carbon tax See *emissions tax*.

CDM

See Clean Development Mechanism.

CER

See certified emission reduction.

Certified emission reduction (CER)

Equal to 1 tonne (metric ton) of CO_2 -equivalent emissions reduced or sequestered through a *Clean Development Mechanism* project, calculated using *Global Warming Potentials*. See also *emissions reduction units*.

CFCs

See chlorofluorocarbons.

CH_4

See methane.

Chlorofluorocarbons (CFCs)

Greenhouse gases covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere, CFCs drift into the upper atmosphere where, given suitable conditions, they break down *ozone*. These gases are being replaced by other compounds, including hydrochlorofluorocarbons and *hydrofluorocarbons*, which are *greenhouse gases* covered under the *Kyoto Protocol*.

Clean Development Mechanism (CDM)

Defined in Article 12 of the Kyoto Protocol, the Clean Development Mechanism is intended to meet two objectives: (1) to assist Parties not included in Annex I in achieving sustainable development and in contributing to the ultimate objective of the convention; and (2) to assist Parties included in Annex I in achieving compliance with their quantified emission limitation and reduction commitments. Certified emission reductions from Clean Development Mechanism projects undertaken in non-Annex I countries that limit or reduce greenhouse gas emissions, when certified by operational entities designated by Conference of the Parties/Meeting of the Parties, can be accrued to the investor (government or industry) from Parties in Annex B. A share of the proceeds from the certified project activities is used to cover administrative expenses as well as to assist developing country Parties that are particularly vulnerable to the adverse effects of *climate change* to meet the costs of *adaptation*.

Glossary

Climate change

Climate change refers to a statistically significant variation in either the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer). Climate change may result from natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in *land use*. Note that *United* Nations Framework Convention on Climate Change, in its Article 1, defines "climate change" as "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods". United Nations Framework Convention on Climate Change thus makes a distinction between "climate change" attributable to human activities altering the atmospheric composition, and "climate variability" attributable to natural causes.

Climate Convention

See United Nations Framework Convention on Climate Change.

CO₂

See carbon dioxide.

CO₂-equivalent

The concentration of *carbon dioxide* that would cause the same amount of *radiative forcing* as the given mixture of carbon dioxide and other *greenhouse gases*.

Co-benefits

The benefits of policies that are implemented for various reasons at the same time – including *climate change mitigation* – acknowledging that most policies designed to address *greenhouse gas mitigation* also have other, often at least equally important, rationales (e.g., related to objectives of development, sustainability, and equity). The term co-impact is also used in a more generic sense to cover both the positive and negative side of the benefits. See also ancillary benefits.

Co-generation

The use of waste heat from electric generation, such as exhaust from gas turbines, for either industrial purposes or district heating.

Commercialization

Sequence of actions necessary to achieve market entry and general market competitiveness of new technologies, processes, and products.

Compliance

See implementation.

Conference of the Parties (CoP)

The supreme body of the *United Nations Framework Convention on Climate Change*, comprising countries that have ratified or acceded to the Framework Convention on Climate Change. The first session of the *Conference of the Parties* (CoP-1) was held in Berlin in 1995, followed by CoP-2 in Geneva 1996, CoP-3 in Kyoto 1997, CoP-4 in Buenos Aires, CoP-5 in Bonn, and CoP-6 in The Hague. See also *CoP/MoP* and *Meeting of the Parties*.

Consumer surplus

A measure of the *value* of consumption beyond the price paid for a good or service.

CoP

See Conference of the Parties.

CoP/MoP

The *Conference of the Parties* of the *United Nations Framework Convention on Climate Change* will serve as the *Meeting of the Parties (MoP)* the supreme body of the *Kyoto Protocol*, but only Parties to the Kyoto Protocol may participate in deliberations and make decisions. Until the Protocol enters into force, *MoP* cannot meet.

Cost-effective

A criterion that specifies that a *technology* or measure delivers a good or service at equal or lower cost than current practice, or the least-cost alternative for the achievement of a given target.

Deforestation

Conversion of forest to non-forest³.

Demand-side management

Policies and programmes designed for a specific purpose to influence consumer demand for goods and/or services. In the energy sector, for instance, it refers to policies and programmes designed to reduce consumer demand for electricity and other energy sources. It helps to reduce *greenhouse gas emissions*.

Dematerialization

The process by which economic activity is decoupled from matter–energy throughput, through processes such as eco-efficient production or *industrial ecology*, allowing environmental impact to fall per unit of economic activity.

Deposit–refund system

Combines a deposit or fee (tax) on a commodity with a refund or rebate (*subsidy*) for implementation of a specified action. See also *emissions tax*.

Desertification

Land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and human activities. Further, the United Nations Convention to Combat Desertification (UNCCD) defines land degradation as a reduction or loss, in arid, semi-arid, and dry sub-humid

³ See footnote 2.

areas, of the biological or economic productivity and complexity of rain-fed cropland, irrigated cropland, or range, pasture, forest, and woodlands resulting from land uses or from a process or combination of processes, including processes arising from human activities and habitation patterns, such as: (i) soil erosion caused by wind and/or water; (ii) deterioration of the physical, chemical and biological or economic properties of soil; and (iii) long-term loss of natural vegetation.

Double dividend

The effect that revenue-generating instruments, such as a *carbon tax* or auctioned (tradable) carbon emission permits, can (1) limit or reduce *greenhouse gas emissions* and (2) offset at least part of the potential welfare losses of climate policies through recycling the revenue in the economy to reduce other taxes likely to be distortionary. In a world with involuntary unemployment, the *climate change* policy adopted may have an effect (a positive or negative "third dividend") on employment. Weak double dividend occurs as long as there is a revenue-recycling effect; that is, as long as revenues are recycled through reductions in the marginal rates of distortionary taxes. Strong double dividend requires that the (beneficial) revenue recycling effect more than offset the combination of the primary cost and in this case, the net cost of abatement is negative. See also *interaction effects*.

Economic potential

Economic potential is the portion of *technological potential* for *greenhouse gas emissions* reductions or *energy efficiency* improvements that could be achieved cost-effectively through the creation of markets, reduction of market failures, increased financial and technological transfers. The achievement of economic potential requires additional *policies and measures* to break down *market barriers*. See also *market potential*, *socioeconomic potential*, and *technological potential*.

Economies in transition (EITs)

Countries with national economies in the process of changing from a planned economic system to a market economy.

Ecosystem

A system of interacting living organisms and their physical environment. The boundaries of what can be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus, the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire earth.

Ecotax

See emissions tax

EITs

See economies in transition.

Emissions

In the *climate change* context, emissions refer to the release of *greenhouse gases* and/or their precursors and aerosols into the atmosphere over a specified area and period of time.

Emissions cap

A mandated restraint, in a scheduled timeframe, that puts a "ceiling" on the total amount of anthropogenic *greenhouse gas emissions* that can be released into the atmosphere. The *Kyoto Protocol* mandates caps on the *greenhouse gas* emissions released by *Annex B countries*/*Parties*.

Emissions factor

An emissions factor is the coefficient that relates actual *emissions* to activity data as a standard rate of emission per unit of activity.

Emissions permit

An emissions permit is the non-transferable or tradable allocation of entitlements by a government to an individual firm to emit a specified amount of a substance.

Emissions quota

The portion or share of total allowable *emissions* assigned to a country or group of countries within a framework of maximum total emissions and mandatory allocations of resources.

Emissions reduction unit (ERU)

Equal to 1 tonne (metric ton) of *carbon dioxide emissions* reduced or sequestered arising from a *Joint Implementation* (defined in Article 6 of the *Kyoto Protocol*) project, calculated using *Global Warming Potential*. See also *certified emission reduction* and *emissions trading*.

Emission standard

A level of emission that under law or voluntary agreement may not be exceeded.

Emissions tax

Levy imposed by a government on each unit of CO_2 -equivalent emissions by a source subject to the tax. Since virtually all of the carbon in fossil fuels is ultimately emitted as carbon dioxide, a levy on the carbon content of fossil fuels – a carbon tax – is equivalent to an emissions tax for emissions caused by to fossil fuel combustion. An energy tax – a levy on the energy content of fuels – reduces demand for energy and so reduces carbon dioxide emissions from fossil fuel use. An ecotax is designated for the purpose of influencing human behaviour (specifically economic behaviour) to follow an ecologically benign path. International emissions/carbon/energy tax is a tax imposed on specified sources in participating countries by an international agency. The revenue is distributed or used as specified by participating countries or the international agency.

Emissions trading

A market-based approach to achieving environmental objectives that allows those reducing *greenhouse gas emissions* below what is required to use or trade the excess reductions to offset emissions at another source inside or outside the country. In general, trading can occur at the intracompany, domestic, and international levels. The Second Assessment Report by the Intergovernmental Panel on Climate Change adopted the convention of using "permits" for domestic trading systems and "quotas" for international trading systems. Emissions trading under Article 17 of the *Kyoto Protocol* is a *tradable quota system* based on the *assigned amounts* calculated from the emission reduction and limitation commitments listed in Annex B of the Protocol. See also *certified emission reduction* and *Clean Development Mechanism*.

Energy conversion

See energy transformation.

Energy efficiency

Ratio of energy output of a conversion process or of a system to its energy input.

Energy intensity

Energy intensity is the ratio of energy consumption to economic or physical output. At the national level, energy intensity is the ratio of total domestic *primary energy* consumption or *final energy* consumption to *Gross Domestic Product* or physical output.

Energy service

The application of useful energy to tasks desired by the consumer such as transportation, a warm room, or light.

Energy Tax

See emissions tax.

Energy transformation

The change from one form of energy, such as the energy embodied in *fossil fuels*, to another, such as electricity.

Equivalent CO₂

See CO₂-equivalent.

ERU See emissions reduction unit.

Externality

See external cost.

External cost

Used to define the costs arising from any human activity, when the agent responsible for the activity does not take full account of the impacts on others of his or her actions. Equally, when the impacts are positive and not accounted for in the actions of the agent responsible they are referred to as *external benefits*. *Emissions* of particulate pollution from a power station affect the health of people in the vicinity, but this is not often considered, or is given inadequate weight, in private decision making and there is no market for such impacts. Such a phenomenon is referred to as an *externality*, and the costs it imposes are referred to as the external costs.

FCCC

See United Nations Framework Convention on Climate Change.

Final energy

Energy supplied that is available to the consumer to be converted into usable energy (e.g., electricity at the wall outlet).

Flexibility mechanisms

See Kyoto Mechanisms.

Forest

A vegetation type dominated by trees. Many definitions of the term *forest* are in use throughout the world, reflecting wide differences in bio-geophysical conditions, social structure, and economics⁴. See also *afforestation*, *deforestation* and *reforestation*.

Fossil fuels

Carbon-based fuels from fossil carbon deposits, including coal, oil, and natural gas.

Fuel switching

Policy designed to reduce *carbon dioxide emissions* by switching to lower carbon-content fuels, such as from coal to natural gas.

Full-cost pricing

The pricing of commercial goods – such as electric power – that includes in the final prices faced by the end user not only the private costs of inputs, but also the costs of *externalities* created by their production and use.

G77/China

See Group of 77 and China.

GDP

See Gross Domestic Product.

General equilibrium analysis

General equilibrium analysis is an approach that considers simultaneously all the markets and feedback effects among these markets in an economy leading to market clearance. See also *market equilibrium*.

Geo-engineering

Efforts to stabilise the climate system by directly managing the energy balance of the earth, thereby overcoming the enhanced *greenhouse effect*.

GHG

See greenhouse gas.

⁴ See footnote 2.

Global warming

Global warming is an observed or projected increase in global average temperature.

Global Warming Potential (GWP)

An index, describing the radiative characteristics of wellmixed *greenhouse gases*, that represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing infrared radiation. This index approximates the time-integrated warming effect of a unit mass of a given *greenhouse gas* in today's atmosphere, relative to that of *carbon dioxide*. Note that *GWP* also stands for *Gross World Product*.

GNP

See Gross National Product.

GPP

See Gross Primary Production.

Greenhouse effect

Greenhouse gases effectively absorb infrared radiation emitted by the earth's surface, by the atmosphere itself from these same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downwards to the earth's surface. Thus, greenhouse gases trap heat within the surface-troposphere system. This is called the natural greenhouse effect. Atmospheric radiation is strongly coupled to the temperature of the level at which it is emitted. In the troposphere the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, -19°C, in balance with the net incoming solar radiation. However, the earth's surface is kept at a much higher temperature of on average +14°C. An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a *radiative forcing*, an imbalance that can only be compensated for by an increase in the temperature of the surface-troposphere system. This is the enhanced greenhouse effect.

Greenhouse gas (GHG)

Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of infrared radiation emitted by the earth's surface, the atmosphere, and clouds. This property causes the *greenhouse effect*. Water vapour (H₂O), *carbon dioxide, nitrous oxide, methane* and *ozone* (O₃) are the primary *greenhouse gases* in the earth's atmosphere. Moreover, there are a number of entirely humanmade *greenhouse gases* in the atmosphere, such as the halocarbons and other chlorine- and bromine-containing substances, dealt with under the *Montreal protocol*. Beside carbon dioxide, *nitrous oxide* and *methane*, the *Kyoto Protocol* deals with the *greenhouse gases sulphur hexafluoride, hydrofluorocarbons*, and *perfluorocarbons*.

Gross World Product (GWP)

An aggregation of the *Gross Domestic Products* of the world. Note that *GWP* also stands for *Global Warming Potential*.

Gross Domestic Product (GDP)

The sum of gross *value added*, at purchasers' prices, by all resident and non-resident producers in the economy, plus any taxes and minus any subsidies not included in the value of the products in a country or a geographic region for a given period of time, normally 1 year. It is calculated without deducting for depreciation of fabricated assets or depletion and degradation of natural resources

Gross National Product (GNP)

GNP is a measure of national income. It measures *value added* from domestic and foreign sources claimed by residents. GNP comprises *Gross Domestic Product* plus net receipts of primary income from non-resident income.

Gross Primary Production (GPP)

The amount of carbon fixed from the atmosphere through photosynthesis.

Group of 77 and China (G77/China)

Originally 77, now more than 130 developing countries that act as a major negotiating bloc in the UNFCCC (United Nations Framework Convention on Climate Change) process. G77/China is also referred to as non-Annex I countries in the context of the United Nations Framework Convention on Climate Change.

GWP

See Global Warming Potential, Gross World Product.

Harmonized emissions/carbon/energy tax

Commits participating countries to impose a tax at a common rate on the same *sources*. Each country can retain the tax revenue it collects. A harmonized tax would not necessarily require countries to impose a tax at the same rate, but imposing different rates across countries would not be *cost-effective*. See also *emissions tax*.

HFCs

See hydrofluorocarbons.

Hydrofluorocarbons (HFCs)

Among the six *greenhouse gases* to be curbed under the *Kyoto Protocol*. They are produced commercially as a substitute for *chlorofluorocarbons*. HFCs largely are used in refrigeration and semiconductor manufacturing. Their *Global Warming Potentials* range from 1300 to 11,700.

IEA

See International Energy Agency.

IGO

See Intergovernmental Organization.

Glossary

Implementation

Implementation refers to the actions (legislation or regulations, judicial decrees, or other actions) that governments take to translate international accords into domestic law and policy. It includes those events and activities that occur after the issuing of authoritative public policy directives, which include the effort to administer and the substantive impacts on people and events. It is important to distinguish between the legal implementation of international commitments (in national law) and the effective implementation (measures that induce changes in the behaviour of target groups). Compliance is a matter of whether and to what extent countries do adhere to the provisions of the accord. Compliance focuses not only on whether implementing measures are in effect, but also on whether there is compliance with the implementing actions. Compliance measures the degree to which the actors whose behaviour is targeted by the agreement, whether they be local government units, corporations, organizations, or individuals, conform to the implementing measures and obligations.

Implementation costs

Costs involved in the implementation of *mitigation* options. These costs are associated with the necessary institutional changes, information requirements, market size, *opportunities* for *technology* gain and learning, and economic incentives needed (grants, subsidies, and taxes).

Income elasticity

The percentage change in the quantity of demand for a good or service, given a 1% change in income.

Industrial ecology

The set of relationships of a particular industry with its environment; often refers to the conscious planning of industrial processes so as to minimize their negative interference with the surrounding environment (e.g., by heat and materials cascading).

Industrialization

The conversion of a society from one based on manual labour to one based on the application of mechanical devices.

Inertia

Property by which matter continues in its existing state of rest or uniform motion in a straight line, unless that state is changed by external force. In the context of *climate change mitigation*, it is associated with different forms of capital (e.g., physical man-made capital, natural capital, and social non-physical capital, including institutions, regulations, and norms).

Infrastructure

The basic installations and facilities upon which the operation and growth of a community depend, such as roads, schools, electric, gas and water utilities, transportation, and communications systems.

Integrated assessment

A method of analysis that combines results and models from the physical, biological, economic, and social sciences, and the interactions between these components, in a consistent framework to evaluate the status and the consequences of environmental change and the policy responses to it.

Interaction effect

The result or consequence of the interaction of *climate change* policy instruments with existing domestic tax systems, including both cost-increasing tax interaction and cost-reducing revenue-recycling effect. The former reflects the impact that *greenhouse gas* policies can have on the functioning of labour and capital markets through their effects on real wages and the real return to capital. By restricting the allowable *greenhouse gas emissions*, permits, regulations, or a *carbon tax* raise the costs of production and the prices of output, thus reducing the real return to labour and capital. For policies that raise revenue for the government, carbon taxes and auctioned permits, the revenues can be recycled to reduce existing distortionary taxes. See also *double dividend*.

Intergovernmental Organization (IGO)

Organizations constituted of governments. Examples include the World Bank, the Organization of Economic Co-operation and Development (OECD), the International Civil Aviation Organization (ICAO), the Intergovernmental Panel on Climate Change (IPCC), and other UN and regional organizations. The *Climate Convention* allows accreditation of these IGOs to attend the negotiating sessions.

International emissions/carbon/energy tax See *emissions tax*.

International Energy Agency (IEA)

Paris-based energy forum established in 1974. It is linked with the Organization for Economic Co-operation and Development (OECD) to enable member countries to take joint measures to meet oil supply emergencies, to share energy information, to co-ordinate their energy policies, and to co-operate in the development of rational energy programmes.

International product and/or technology standards See *Standards*.

JI

See Joint Implementation.

Joint Implementation (JI)

A market-based implementation mechanism defined in Article 6 of the *Kyoto Protocol*, allowing *Annex I countries* or companies from these countries to implement projects jointly that limit or reduce *emissions*, or enhance *sinks*, and to share the *Emissions Reduction Units*. JI activity is also permitted in Article 4.2(a) of the *United Nations Framework Convention on Climate Change*. See also *Activities Implemented Jointly* and *Kyoto Mechanisms*.

Known technological options

Refer to technologies that exist in operation or pilot plant stage today. It does not include any new technologies that will require drastic technological breakthroughs.

Kyoto Mechanisms

Economic mechanisms based on market principles that Parties to the *Kyoto Protocol* can use in an attempt to lessen the potential economic impacts of *greenhouse gas* emission-reduction requirements. They include *Joint Implementation* (Article 6), the *Clean Development Mechanism* (Article 12), and *Emissions Trading* (Article 17).

Kyoto Protocol

The Kyoto Protocol to the United Nations Framework Convention on Climate Change was adopted at the Third Session of the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change in 1997 in Kyoto, Japan. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most OECD countries and countries with Economies in transition) agreed to reduce their anthropogenic greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulphur hexafluoride) by at least 5% below 1990 levels in the commitment period 2008 to 2012. The Kyoto Protocol has not yet entered into force (November 2000).

Land use

The total of arrangements, activities, and inputs undertaken in a certain land-cover type (a set of human actions). The social and economic purposes for which land is managed (e.g., grazing, timber extraction, and conservation).

Leakage

The part of *emissions* reductions in *Annex B countries* that may be offset by an increase of the emission in the non-constrained countries above their *baseline* levels. This can occur through (1) relocation of energy-intensive production in non-constrained regions; (2) increased consumption of *fossil fuels* in these regions through decline in the international price of oil and gas triggered by lower demand for these energies; and (3) changes in incomes (and thus in energy demand) because of better terms of trade. Leakage also refers to the situation in which a carbon *sequestration* activity (e.g., tree planting) on one piece of land inadvertently, directly or indirectly, triggers an activity, which in whole or part, counteracts the carbon effects of the initial activity.

Macroeconomic costs

Usually measured as changes in *Gross Domestic Product* or growth in *Gross Domestic Product*, or as loss of "welfare" or loss of consumption.

Marginal cost pricing

The pricing of commercial goods and services such that the price equals the additional cost that arises from the expansion of production by one additional unit.

Market barriers

In the context of *mitigation* of *climate change*, conditions that prevent or impede the diffusion of *cost-effective* technologies or practices that would mitigate *greenhouse gas emissions*.

Market-based incentives

Measures intended to use price mechanisms (e.g., taxes and tradable permits) to reduce *greenhouse gas emissions*.

Market equilibrium

The point at which demand for goods and services equals the supply; often described in terms of the level of prices, determined in a competitive market, that "clears" the market.

Market penetration

Market penetration is the share of a given market that is provided by a particular good or service at a given time.

Market potential

The portion of the economic potential for *greenhouse gas emissions* reductions or *energy efficiency* improvements that could be achieved under forecast market conditions, assuming no new *policies and measures*. See also *economic potential*, *socio-economic potential*, and *technological potential*.

Methane (CH₄)

Methane is one of the six *greenhouse gases* to be mitigated under the *Kyoto Protocol*.

Methane recovery

Method by which *methane emissions*, for example from coal mines or waste sites, are captured and then reused either as a fuel, or for some other economic purpose (e.g., reinjection in oil or gas reserves).

Meeting of the Parties (to the Kyoto Protocol) (MoP)

Conference of the Parties to the *United Nations Framework Convention on Climate Change* serving as the meeting of the Parties to the *Kyoto Protocol*. It is the supreme body of the Kyoto Protocol.

Mitigation

An anthropogenic intervention to reduce the *sources* or enhance the *sinks* of *greenhouse gases*. See also *biological options, geo-engineering*.

Mitigative capacity

The social, political, and economic structures and conditions that are required for effective *mitigation*.

Montreal Protocol

The Montreal Protocol on Substances that Deplete the *Ozone* Layer was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric ozone, such as

chlorofluorocarbons, methyl chloroform, carbon tetrachloride, and many others.

MOP

See *Meeting of the Parties* (to the Kyoto Protocol).

N,0

See nitrous oxide.

National Action Plans

Plans submitted to the *Conference of the Parties* by Parties outlining the steps that they have adopted to limit their anthropogenic *greenhouse gas emissions*. Countries must submit these plans as a condition of participating in the *United Nations Framework Convention on Climate Change* and, subsequently, must communicate their progress to the *Conference of the Parties* regularly. The National Action Plans form part of the National Communications, which include the national inventory of *greenhouse gas sources* and *sinks*.

Nitrous oxide (N₂O)

One of the six *greenhouse gases* to be curbed under the *Kyoto Protocol*.

Non-Annex I Parties/Countries

The countries that have ratified or acceded to the *United Nations Framework Convention on Climate Change* that are not included in Annex I of the *Climate Convention*.

Non-Annex B countries/Parties

The countries that are not included in Annex B in the *Kyoto Protocol*.

No regrets options

See no regrets policy.

No regrets policy

One that would generate net social benefits whether or not there is climate change. *No regrets opportunities* for *greenhouse gas emissions* reduction are defined as those options whose benefits such as reduced energy costs and reduced emissions of local/regional pollutants equal or exceed their costs to society, excluding the benefits of avoided climate change. *No regrets potential* is defined as the gap between the *market potential* and the *socio-economic potential*.

No regrets potential

See no regrets policy.

Optimal policy

A policy is assumed to be "optimal" if marginal abatement costs are equalized across countries, thereby minimizing *total costs*.

Opportunity

An opportunity is a situation or circumstance to decrease the gap between the *market potential* of any *technology* or prac-

tice and the *economic potential*, *socio-economic potential*, or *technological potential*.

Opportunity cost

Opportunity cost is the cost of an economic activity forgone by the choice of another activity.

Ozone

Ozone, the triatomic form of oxygen (O_3) , is a gaseous atmospheric constituent. In the troposphere it is created both naturally and by photochemical reactions involving gases resulting from human activities ("smog"). Tropospheric ozone acts as a *greenhouse gas*. In the stratosphere it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O_2) . Stratospheric ozone plays a decisive role in the stratospheric radiative balance. Its concentration is highest in the ozone layer.

PAMs

See Policies and Measures.

Pareto criterion / Pareto optimum

A requirement or status that an individual's welfare could not be further improved without making others in the society worse off.

Pareto improvement

The opportunity that one individual's welfare can be improved without making the welfare of the rest of society worse off.

Performance criteria

See standards.

Perfluorocarbons (PFCs)

Among the six *greenhouse gases* to be abated under the *Kyoto Protocol*. These are by-products of aluminium smelting and uranium enrichment. They also replace *chlorofluorocarbons* in manufacturing semiconductors. The *Global Warming Potential* of PFCs is 6500–9200 times that of *carbon dioxide*.

PFCs

See perfluorocarbons.

Policies and Measures (PAMs)

In United Nations Framework Convention on Climate Change parlance, policies are actions that can be taken and/or mandated by a government–often in conjunction with business and industry within its own country, as well as with other countries–to accelerate the application and use of measures to curb greenhouse gas emissions. Measures are technologies, processes, and practices used to implement policies, which, if employed, would reduce greenhouse gas emissions below anticipated future levels. Examples might include carbon or other energy taxes, standardized fuel efficiency standards for automobiles, etc. "Common and co-ordinated" or "harmonized" policies refer to those adopted jointly by Parties.

Pool

See reservoir.

PPP

See *Purchasing Power Parity*. It also stands for polluter-paysprinciple.

Precautionary Principle

A provision under Article 3 of the *United Nations Framework Convention on Climate Change*, stipulating that the Parties should take precautionary measures to anticipate, prevent or minimize the causes of *climate change* and mitigate its adverse effects. Where there are threats of serious or irreversible damage, lack of full scientific certainty should not be used as a reason for postponing such measures, taking into account that *policies and measures* to deal with climate change should be *cost-effective* so as to ensure global benefits at the lowest possible cost.

Present value cost

The sum of all costs over all time periods, with future costs discounted.

Price elasticity

The responsiveness of demand to the cost for a good or service; specifically, the percentage change in the quantity consumed of a good or service for a 1% change in the price for that good or service.

Primary energy

Energy embodied in natural resources (e.g., coal, crude oil, sunlight, uranium) that has not undergone any anthropogenic conversion or transformation.

"Primary market" and "secondary market" trading

In commodities and financial exchanges, buyers and sellers who trade directly with each other constitute the "primary market", while buying and selling through the exchange facilities represent the "secondary market".

Private costs

Categories of costs influencing an individual's decision-making are referred to as private costs. See also *social cost, external cost,* and *total cost.*

Producer surplus

Returns beyond the cost of production that provide compensation for owners of skills or assets that are scarce (e.g., agriculturally productive land). See also *consumer surplus*.

Project costs

Project costs are all the financial costs of a project such as capital, labour, and operating costs.

Purchasing Power Parity (PPP)

Estimates of *Gross Domestic Product* based on the purchasing power of currencies rather than on current exchange rates. Such estimates are a blend of extrapolated and regressionbased numbers, using the results of the International Comparison Program. PPP estimates tend to lower per capita *Gross Domestic Products* in industrialized countries and raise per capita *Gross Domestic Products* in developing countries. *PPP* is also an acronym for polluter-pays-principle.

QELRCs

See quantified emission limitation or reduction commitments.

Quantified emission limitation or reduction commitments (QELRCs)

The *greenhouse gas emissions* reduction commitments, in percentage terms relevant to base year or period, made by developed countries listed in Annex B of the *Kyoto Protocol*. See also *targets and timetables*.

Radiative forcing

Radiative forcing is the change in the net vertical irradiance (expressed in Watts per square meter: Wm⁻²) at the tropopause due to an internal change or a change in the external forcing of the climate system, such as, for example, a change in the concentration of *carbon dioxide* or the output of the Sun. Usually radiative forcing is computed after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with all tropospheric properties held fixed at their unperturbed values. Radiative forcing is called *instantaneous* if no change in stratospheric temperature is accounted for.

Rebound effect

Occurs because, for example, an improvement in motor efficiency lowers the cost per kilometre driven; it has the perverse effect of encouraging more trips.

Reforestation

Planting of forests on lands that have previously contained forests but that have been converted to some other use⁵. See also *afforestation* and *deforestation*.

Regulatory measures

Rules or codes enacted by governments that mandate product specifications or process performance characteristics. See also *standards*.

Renewables

Energy sources that are, within a short timeframe relative to the earth's natural cycles, sustainable, and include non-carbon technologies such as solar energy, hydropower, and wind, as well as carbon neutral technologies such as *biomass*.

⁵ See also footnote 2.

Glossary

Research, development, and demonstration

Scientific and/or technical research and development of new production processes or products, coupled with analysis and measures that provide information to potential users regarding the application of the new product or process; demonstration tests, and feasibility of applying these products processes via pilot plants and other pre-commercial applications.

Reserves

Refer to those occurrences that are identified and measured as economically and technically recoverable with current technologies and prices. See also *resources*.

Reservoir

A component of the climate system, other than the atmosphere, which has the capacity to store, accumulate or release a substance of concern, e.g. carbon, a *greenhouse gas* or a precursor. Oceans, soils, and forests are examples of reservoirs of carbon. *Pool* is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of substance of concern, held within a reservoir at a specified time, is called the *stock*.

Resources

Resources are those occurrences with less certain geological and/or economic characteristics, but which are considered potentially recoverable with foreseeable technological and economic developments.

Resource base

Resource base includes both *reserves* and *resources*.

Revenue recycling

See interaction effect.

Safe landing approach See *tolerable windows approach*.

Scenario

A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about key driving forces (e.g., rate of *technology* change, prices) and relationships. Note that scenarios are neither predictions nor forecasts.

Sequestration

The process of increasing the carbon content of a carbon *reservoir* other than the atmosphere. Biological approaches to sequestration include direct removal of *carbon dioxide* from the atmosphere through *land-use* change, *afforestation*, *reforestation*, and practices that enhance soil carbon in agriculture. Physical approaches include separation and disposal of *carbon dioxide* from flue gases or from processing *fossil fuels* to produce hydrogen- (H₂) and carbon dioxide-rich fractions and long-term storage underground in depleted oil and gas reservoirs, coal seams, and saline aquifers.

SF_6

See sulphur hexafluoride.

Sinks

Any process or activity or mechanism that removes a *green-house gas*, an aerosol, or a precursor of a *greenhouse gas* or aerosol from the atmosphere.

Social costs

The social cost of an activity includes the *value* of all the resources used in its provision. Some of these are priced and others are not. Non-priced resources are referred to as *externalities*. It is the sum of the costs of these externalities and the priced resources that makes up the social cost. See also *private cost, external cost,* and *total cost*.

Socio-economic potential

The socio-economic potential represents the level of GHG mitigation that would be approached by overcoming social and cultural obstacles to the use of technologies that are cost-effective. See also *economic potential*, *market potential*, and *technology potential*.

Source

A source is any process, activity or mechanism that releases a *greenhouse gas*, an aerosol, or a precursor of a *greenhouse gas* or aerosol into the atmosphere.

Spillover effect

The economic effects of domestic or sectoral *mitigation* measures on other countries or sectors. In this report, no assessment is made on environmental spillover effects. Spillover effects can be positive or negative and include effects on trade, carbon *leakage*, transfer, and diffusion of environmentally sound *technology* and other issues.

Stabilization

The achievement of stabilization of atmospheric concentrations of one or more *greenhouse gases* (e.g., *carbon dioxide* or a *CO*₂*-equivalent* basket of *greenhouse gases*).

Stabilization analysis

In this report this refers to analyses or *scenarios* that address the *stabilization* of the concentration of *greenhouse gases*.

Stabilization scenarios

See stabilization analysis.

Stakeholders

Person or entity holding grants, concessions, or any other type of *value* or interest that would be affected by a particular action or policy.

Standards

Set of rules or codes mandating or defining product performance (e.g., grades, dimensions, characteristics, test methods, and rules for use). *International product and/or technology or* *performance standards* establish minimum requirements for affected products and/or technologies in countries where they are adopted. The standards reduce *greenhouse gas emissions* associated with the manufacture or use of the products and/or application of the technology. See also *emissions standards*, *regulatory measures*.

Stock

See reservoir.

Storyline

A narrative description of a *scenario* (or a family of scenarios) that highlights the main scenario characteristics, relationships between key driving forces, and the dynamics of the scenarios.

Structural change

Changes, for example, in the relative share of *Gross Domestic Product* produced by the industrial, agricultural, or services sectors of an economy; or more generally, systems transformations whereby some components are either replaced or potentially substituted by other ones.

Subsidy

Direct payment from the government to an entity, or a tax reduction to that entity, for implementing a practice the government wishes to encourage. *Greenhouse gas emissions* can be reduced by lowering existing subsidies that have the effect of raising emissions, such as subsidies to *fossil fuel* use, or by providing subsidies for practices that reduce emissions or enhance *sinks* (e.g., for insulation of buildings or planting trees).

Sulphur hexafluoride (SF₆)

One of the six *greenhouse gases* to be curbed under the *Kyoto Protocol*. It is largely used in heavy industry to insulate high-voltage equipment and to assist in the manufacturing of cable-cooling systems. Its *Global Warming Potential* is 23,900.

Supplementarity

The *Kyoto Protocol* states that *emissions trading* and *Joint Implementation* activities are to be supplemental to domestic actions (e.g., energy taxes, fuel efficiency *standards*, etc.) taken by developed countries to reduce their *greenhouse gas emissions*. Under some proposed definitions of supplementarity (e.g., a concrete ceiling on level of use), developed countries to achieve their reduction targets. This is a subject for further negotiation and clarification by the parties.

Targets and timetables

A target is the reduction of a specific percentage of *greenhouse gas emissions* from a *baseline* date (e.g., "below 1990 levels") to be achieved by a set date, or timetable (e.g., 2008 to 2012). For example, under the *Kyoto Protocol's* formula, the European Union has agreed to reduce its *greenhouse gas* emissions by 8% below 1990 levels by the 2008 to 2012 commitment period. These targets and timetables are, in effect, an *emissions cap* on the total amount of *greenhouse gas* emissions that can be emit-

ted by a country or region in a given time period. See also *quantified emission limitation or reduction commitments*.

Tax-interaction effect See *interaction effect*.

Technological potential

The amount by which it is possible to reduce *greenhouse gas emissions* or improve *energy efficiency* by implementing a *technology* or practice that has already been demonstrated. See also *economic potential*, *market potential*, and *socio-economic potential*.

Technology

A piece of equipment or a technique for performing a particular activity.

Technology or performance standard See *standard*.

Technology transfer

The broad set of processes that cover the exchange of knowledge, money, and goods among different *stakeholders* that lead to the spreading of *technology* for adapting to or mitigating *climate change*. As a generic concept, the term is used to encompass both diffusion of technologies and technological co-operation across and within countries.

Tolerable windows approach

These approaches analyse *greenhouse gas emissions* as they would be constrained by adopting a long-term climate - rather than *greenhouse gas* concentration *stabilization* - target (e.g., expressed in terms of temperature or sea level changes or the rate of such changes). The main objective of these approaches is to evaluate the implications of such long-term targets for short- or medium-term "tolerable" ranges of global *greenhouse gas* emissions. Also referred to as safe landing approaches.

Top-down models

The terms "top-down" and "bottom-up" are shorthand for aggregate and disaggregated models. The top-down label derives from how modellers applied macroeconomic theory and econometric techniques to historical data on consumption, prices, incomes, and factor costs to model final demand for goods and services, and supply from main sectors, like the energy sector, transportation, agriculture, and industry. Therefore, top-down models evaluate the system from aggregate economic variables, as compared to *bottom-up models* that consider technological options or project specific *climate change mitigation* policies. Some technology data were, however, integrated into top-down analysis and so the distinction is not that clear-cut.

Total cost

All items of cost added together. The total cost to society is made up of both the *external cost* and the *private cost*, which together are defined as *social cost*.

Glossary

Trace gas

A minor constituent of the atmosphere. The most important trace gases that contribute to the *greenhouse effect* are, *inter alia*, *carbon dioxide*, *ozone*, *methane*, *nitrous oxide*, *perfluorocarbons*, *chlorofluorocarbons*, *hydrofluorocarbons*, *sulphur hexafluoride*, methyl chloride, and water vapour.

Tradable quota system

See emissions trading.

Trade effects

Economic impacts of changes in the purchasing power of a bundle of exported goods of a country for bundles of goods imported from its trade partners. Climate policies change the relative production costs and may change terms of trade substantially enough to change the ultimate economic balance.

Umbrella Group

A set of largely non-European developed countries who occasionally act as a negotiating bloc on specific issues.

United Nations Framework Convention on Climate Change (UNFCCC)

The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Economic Community. Its ultimate objective is the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system". It contains commitments for all Parties. Under the Convention Parties included in *Annex I* aim to return greenhouse gas emission not controlled by the *Montreal Protocol* to 1990 levels by the year 2000. The convention entered in force in March 1994. See also *Conference of the Parties* and *Kyoto Protocol*.

Uncertainty

An expression of the degree to which a value (e.g., the future state of the climate system) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures (e.g., a range of values calculated by various models) or by qualitative statements (e.g., reflecting the judgement of a team of experts).

UNFCCC

See United Nations Framework Convention on Climate Change.

Value added

The net output of a sector after adding up all outputs and subtracting intermediate inputs.

Value

Worth, desirability, or utility based on individual preferences. The total value of any resource is the sum of the values of the different individuals involved in the use of the resource. The values, which are the foundation of the estimation of costs, are measured in terms of the willingness to pay (WTP) by individuals to receive the resource or by the willingness of individuals to accept payment (WTA) to part with the resource.

Vision

Picture of a future world, usually a desired future world.

Voluntary agreement

An agreement between a government authority and one or more private parties, as well as a unilateral commitment that is recognized by the public authority, to achieve environmental objectives or to improve environmental performance beyond compliance.

Voluntary measures

Measures to reduce *greenhouse gas emissions* that are adopted by firms or other actors in the absence of government mandates. Voluntary measures help make climate-friendly products or processes more readily available or encourage consumers to incorporate environmental *values* in their market choices.

III

Acronyms, Abbreviations, and Chemical Compounds

Acronyms, Abbreviations, and Chemical Compounds

AAUs	Assigned Amount Units	FGD	Flue Gas Desulphurization
ABWR	Advanced Boiling Water Reactor	GATT	General Agreement on Trade and Tariff
ACEA	European Automobile Manufacturer's	GDP	Gross Domestic Product
	Association	GEF	Global Environment Facility
ADB	Asian Development Bank	GHGs	Greenhouse Gases
AEEI	Autonomous Energy Efficiency	GNP	Gross National Product
	Improvement	GWP	Global Warming Potential / Gross World
AIJ	Activity Implemented Jointly		Product
ALGAS	Asia-Least-Cost Greenhouse Gas	H ₂ O	Water vapour
	Abatement Strategy	HC	Hydrocarbons
ARD	Afforestation, Reforestation and	HCFC	Hydrochlorofluorocarbon
1 ICD	Deforestation	HDI	Human Development Index
ASF	Atmospheric Stabilization Framework	HFCs	Hydrofluorocarbons (hydrogenated
BAU	Business-As-Usual	III CS	Fluorocarbons)
BIGCC	Biomass Integrated Gasification Combined	HFE	Hydrofluoroethers
BIOCC	-	HVAC	•
DOD	Cycle		Heating, Ventilation and Air Conditioning
BOP	Balance-Of-Payments	IA	Integrated Assessment
BWR	Boiling Water Reactor	IAEA	International Atomic Energy Agency
С	Carbon	IAMs	Integrated Assessment Models
C_2F_6	Perfluoroethane / Hexafluoroethane	ICAO	International Civil Aviation Organization
CAC	Command and control	ICE	Internal Combustion Engine
CAFE	Corporate Average Fuel Economy	IEA	International Energy Agency
CANZ	Canada, Australia and New Zealand	IET	International Emissions Trading
CBA	Cost Benefit Analysis	IGCC	Integrated Gasification Combined Cycle
CCGT	Combined Cycle Gas Turbine	IGCCS	Integrated Gasification Combined Cycle or
CDM	Clean Development Mechanism		Supercritical
CEA	Cost-Effectiveness Analysis	IMO	International Maritime Organization
CERs	Certified Emission Reduction	IPCC	Intergovernmental Panel on Climate Change
CF_4	Perfluoromethane / Tetrafluoromethane	IPR	Intellectual Property Rights
CFCs	Chlorofluorocarbons	IS92	IPCC 1992 Scenario
CFL	Compact Fluorescent Lamps	ISIC	International Standard Industrial
CGE	Computable General Equilibrium		Classification
CH ₄	Methane	ISO	International Standardization Organization
CHP	Combined Heat and Power	IUCN	International Union for the Conservation of
CO	Carbon-monoxide	10 01 (Nature and Natural Resources
CO ₂	Carbon-dioxide	Л	Joint Implementation
COP	Conference of Parties	LESS	*
CSD	Commission for Sustainable Development		Low CO ₂ – emitting Energy Supply System
	Developing Countries	LNG LPG	Liquid Natural Gas
DCs	1 0		Liquefied Petroleum Gas
DES	Development, Equity, and Sustainability	LWR	Light Water Reactor
DMF	Decision Making Framework	MAC	Marginal Abatement Cost
DSM	Demand Side Management	MDB	Multilateral Development Banks
EBRD	European Bank for Reconstruction and	MEA	Multilateral Environmental Agreements
	Development	MNCs	Multinational Corporation
EEA	European Environmental Agency	Ν	Nitrogen (element)
EITs	Economies In Transition	N ₂	Nitrogen (gas)
EMS	Environmental Management Standard	N ₂ O	Nitrous oxide
ERUs	Emission Reduction Units	Na ₃ AlF ₆	Cryolite
ESCOs	Energy Service Companies	NACE	Nomenclature des Activites dans la
ESTs	Environmentally Sound Technologies		Communaute Europienne (Index of
EU	European Union		Business Activities in the European Union)
FAO	United Nations Food and Agricultural	NGOs	Non-Governmental Organizations
	Organization	NH ₃	Ammonia
FBC	Fluid Bed Combustion	NH_4^{3+}	Ammonium ion
FDI	Foreign Direct Investments	NICs	Newly Industrialized Countries
	-		÷

NMHC	Non-Methane Hydrocarbon	SO _x	Sulphur oxides
NMVOCs	Non-Methane Volatile Organic Compounds	SPM	Summary for Policymakers
NO	Nitric oxide	SRES	Special Report on Emissions Scenarios
NO ₂	Nitrogen dioxide	SRLULUCF	Special Report on Land-Use, Land-Use
NO _x	The sum of NO and NO_2		Change and Forestry
O ₂ ^	Oxygen	SRTT	Special Report on Methodological and
O_3^2	Ozone		Technological Issues in Technology Transfer
ODA	Official Development Assistance	TAR	Third Assessment Report
ODS	Ozone Depleting Substances	TPES	Total Primary Energy Supply
OECD	Organization for Economic Co-operation	UNCED	United Nations Conference on Environment
	and Development		and Development
OPEC	Organization of Petroleum Exporting	UNDP	United Nations Development Programme
	Countries	UNEP	United Nations Environment Programme
PEM	Proton exchange membrane	UNFCCC	United Nations Framework Convention on
PFC	Perfluorocarbon		Climate Change
PPM	Processes and Production Method or Parts	VA	Voluntary Agreements or Value - Added
	Per Million	VAT	Value Added Tax
PPP	Purchasing Power Parity or Polluter Pays	VOC	Volatile organic compound
	Principle	WCED	World Commission on Environment and
PV	Photo Voltaic		Development
PWR	Pressurized Water Reactor	WEC	World Energy Council
QELRCs	Quantified Emission Limitation or	WG I	Working Group One of the IPCC
	Reduction Commitments	WG II	Working Group Two of the IPCC
R&D	Research and Development	WG III	Working Group Three of the IPCC
SAR	Second Assessment Report of the IPCC	WHO	World Health Organization
SBSTA	Subsidiary Body for Scientific and	WTA	Willingness to Accept compensation
	Technological Advice	WTO	World Trade Organization
SF ₆	Sulfur hexafluoride	WTP	Willingness to Pay
SMEs	Small and Medium Sized Enterprises	WWF	World Wide Fund for Nature
SO ₂	Sulphur dioxide		

IV

Units, Conversion Factors, and GDP Deflators

Units

SI (Systeme Internationale) Units

Physical Quanitty	Name of Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	s
thermodynamic temperature	kelvin	Κ
amount of substance	mole	mol

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10-1	deci	d	10	deca	da
10-2	cent	с	10 ²	hecto	h
10-3	milli	m	10^{3}	kilo	k
10-6	micro	μ	10^{6}	mega	Μ
10-9	nano	n	10^{9}	giga	G
10-12	pico	р	1012	tera	Т
10-15	femto	f	10^{15}	peta	Р
			1018	eta	Е
			10^{21}	zeta	Ζ

Special Names and Symbols for Certain SI-Derived Units

Physical Quantity	Name of SI Unit	Symbol for SI Unit	Definition of Unit
force	newton	Ν	kg m s ⁻²
pressure	pascal	Ра	$kg m^{-1} s^{-2} (=N m^{-2})$
energy	joule	J	kg m ² s ⁻²
power	watt	W	$kg m^2 s^{-3} (=J s^{-1})$
frequency	hertz	Hz	s ⁻¹ (cycles per second

Decimal Fractions and Multiples of SI Units Having Special Names

Physical Quantity	Name of Unit	Symbol for Unit	Definition of Unit
length	ångstrom	Å	10^{-10} m = 10^{-8} cm
length	micron	μm	10 ⁻⁶ m
area	hectare	ha	10^4 m^2
force	dyne	dyn	10 ⁻⁵ N
pressure	bar	bar	$10^5 \text{ N m}^{-2} = 10^5 \text{ Pa}$
pressure	millibar	mb	$10^2 \text{ N m}^{-2} = 1 \text{ hPa}$
mass	tonne	t	10^3 kg
mass	gram	g	10 ⁻³ kg
column density	Dobson units	DU	2.687×10^{16} molecules cm ⁻²
Stream function	Sverdrup	Sv	$10^6 \text{ m}^3 \text{ s}^{-1}$

Non-SI Units

°C	degree Celsius (0 °C = 273 K approximately)
	Temperature differences are also given in °C (=K) rather than the more correct form of "Celsius degrees".
ppmv	parts per million (10 ⁶) by volume
ppbv	parts per billion (10^9) by volume
pptv	parts per trillion (10^{12}) by volume
yr	year
Btu	British Themal Unit
MWe	megawatts of electricity
tce	tonnes of coal equivalent
toe	tonnes of oil equivalent
boe	barrels of oil equivalent

The units of mass adopted in this report are generally those which have come into common usage and have deliberately not been harmonized, e.g.,

kt	kilotonnes (10 ³ tonnes)
GtC	gigatonnes of carbon (1 GtC = $(10^9 \text{ tonnes C} = 3.67 \text{ Gt carbon dioxide})$
PgC	petagrams of carbon (1 $PgC = 1 GtC$)
MtN	megatonnes (10 ⁶ tonnes) of nitrogen
TgC	teragrams of carbon $(1 \text{ TgC} = 1 \text{ MtC})$
$TgCH_4$	teragrams of methane
TgN	teragrams of nitrogen
TgS	teragrams of sulphur

Conversion Factors¹

C - CO₂ Conversion Factor C/CO₂ = 1/3.67

General Conversion Factors for Energy

To:	TJ	Gcal	Mtoe	MBtu	GWh
From:	multiply by:				
ТJ	1	238.8	2.388 x 10 ⁻⁵	947.8	0.2778
Gcal	4.1868 x 10 ⁻³	1	10-7	3.968	1.163 x 10 ⁻³
Mtoe	4.1868 x 10 ⁴	107	1	3.968 x 10 ⁷	11630
Mbtu	1.0551 x 10 ⁻³	0.252	2.52 x 10 ⁻⁸	1	2.391 x 10 ⁻⁴
GWh	3.6	860	8.6 x 10 ⁻⁵	3412	1

¹ Energy related conversion factors are taken from World Energy Outlook 2000, International Energy Agency, Paris.

То:	kg	t	lt	st	lb
From:	multiply by	:			
kilogram (kg)	1	0.001	9.84 x 10 ⁻⁴	1.102 x 10 ⁻³	2.2046
tonne (t)	1000	1	0.984	1.1023	2204.6
long ton (lt)	1016	1.016	1	1.120	2240.0
short ton (st)	907.2	0.9072	0.893	1	2000.0
Pound (lb)	0.454	4.54 x 10 ⁻⁴	4.46 x 10 ⁻⁴	5.0 x 10 ⁻⁴	1

Conversion Factors for Mass

Conversion Factors for Volume

То:	gal US	gal UK	bbl	ft ³	1	m ³
From:	multiply by:					
US Gallon (gal)	1	0.8327	0.02381	0.1337	3.785	0.0038
UK Gallon (gal)	1.201	1	0.02859	0.1605	4.546	0.0045
Barrel (bbl)	42.0	34.97	1	5.615	159.0	0.159
Cubic foot (ft ³)	7.48	6.229	0.1781	1	28.3	0.0283
Litre (l)	0.2642	0.220	0.0063	0.0353	1	0.001
Cubic metre (m ³)	264.2	220.0	6.289	35.3147	1000.0	1

Specific Net Calorific Values

Crude Oil*		Petroleum Products*		Coal*	
	toe/tonne		toe/tonne		toe/tonne
Saudi Arabia	1.0160	Refinery gas	1.150	Peoples's Rep. of China	0.500
United States	1.0286	LPG	1.130	United States	0.646
Former USSR	1.0050	Ethane	1.130	India	0.477
Iran	1.0190	Motor Gasoline	1.070	South Africa	0.564
Venezuela	1.0685	Jet Fuel	1.065	Australia	0.597
Mexico	1.0115	Kerosene	1.045	Russia	0.444
Norway	1.0260	Naphtha	1.075	Poland	0.543
People's Rep. of China	1.0000	Gas/Diesel Oil	1.035	Kazakhstan	0.444
United Kingdom	1.0415	Fuel Oil	0.960	Ukraine	0.516
UAE	1.0180	Other Products	0.960	Germany	0.604

* for selected countries

* selected products – average values

* steam coal production for selected countries

Gross Caloric Values

Natural Gas*

	kJ/m ³
Russia	37579
United States	38416
Canada	38130
Netherlands	38220
United Kingdom	39518
Indonesia	40600
Algeria	42000
Uzbekistan	37889
Saudi Arabia	38000
Norway	40460

* for selected countries (production).

Note: to calculate the net heat content, the gross heat content is multiplied by 0.9.

Conventions for Electricity

Figures for electricity production, trade and final consumption are calculated using the energy content of the electricity (i.e. at a rate of 1TWh = 0.086Mtoe). Hydro-electricity production (excluding pumped storage) and electricity produced by other non-thermal means (wind, tide, photovoltaic, *etc.*) are accounted for similarly using 1TWh = 0.086 Mtoe. However, the primary energy equivalent of nuclear electricity is calculated from the gross generation by assuming a 33% conversion efficiency, i.e. 1TWh = (0.086 / 0.33) Mtoe. In the case of electricity produced from geothermal heat, if the actual geothermal efficiency is not known, then the primary equivalent is calculated assuming an efficiency of 10%, so 1TWh = (0.086 / 0.1) Mtoe.

GDP Deflators and Changes in Consumer Prices

(Per cent)

	1982-1991	1992-2001	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
GDP deflators												
Advanced economies	4.8	2.0	3.2	2.7	2.2	2.2	1.8	1.7	1.4	1.0	1.5	1.9
United States	3.7	2.0	2.4	2.4	2.1	2.2	1.9	1.9	1.2	1.5	2.0	2.3
Japan	5.8	2.5	4.3	3.5	2.7	3.0	2.5	1.9	2.0	1.6	1.7	1.7
European Union	1.8	-	1.7	0.6	0.2	-0.6	-1.4	0.3	0.3	-0.9	-0.8	0.9
Other advanced economies	8.7	2.4	3.8	3.8	3.3	3.4	2.9	2.1	1.5	0.3	1.3	2.2
Consumer prices												
Advanced economies	4.9	2.3	3.5	3.1	2.6	2.6	2.4	2.1	1.5	1.4	1.9	2.0
United States	4.1	2.5	3.0	3.0	2.6	2.8	2.9	2.3	1.6	2.2	2.5	2.5
European Union	5.7	2.5	4.6	3.8	3.0	2.9	2.5	1.8	1.4	1.4	1.8	1.8
Japan	1.9	0.7	1.7	1.2	0.7	-0.1	0.1	1.7	0.6	-0.3	0.1	0.9
Other advanced economies	8.8	2.8	3.8	3.4	3.3	3.8	3.2	2.4	2.6	1.0	2.5	2.4
Developing countries	45.7	20.3	36.1	49.8	55.1	22.9	15.1	9.5	10.1	6.5	5.7	4.7
Regional groups												
Africa	19.6	24.4	47.1	38.7	54.8	35.5	30.0	13.6	9.2	11.0	9.6	6.1
Asia	9.7	7.6	8.6	10.8	16.0	13.2	8.2	4.7	7.6	2.5	2.6	3.0
Middle East and Europe	21.2	24.7	26.5	26.6	33.3	38.9	26.6	25.3	26.0	20.3	16.2	9.4
Western Hemisphere	166.9	47.4	109.1	202.6	202.5	34.4	21.4	13.0	9.8	8.8	7.7	6.4
Analytical groups By source of export earnin	105											
Fuel	13.7	21.4	22.1	26.2	31.8	43.2	31.9	16.1	15.6	12.0	10.5	8.8
Nonfuel	51.2	20.3	38.0	53.0	58.0	20.8	13.5	8.9	9.6	6.0	5.2	4.3
By external financing source	0112	2010	2010	0010	2010	2010	1010	017	2.0	0.0	0.2	
Net creditor countries	2.8	3.6	4.3	5.5	4.0	5.8	3.9	1.9	1.8	1.4	3.3	4.1
Net debtor countries	47.7	20.9	37.4	51.6	57.2	23.5	15.5	9.8	10.4	6.7	5.8	4.7
Official financing	34.3	24.0	59.3	37.4	64.8	30.9	22.4	11.2	8.2	10.4	7.6	4.4
Private financing	54.6	21.0	38.0	57.1	61.4	21.4	13.9	9.2	10.0	5.7	5.1	4.3
Diversified financing	22.5	19.2	24.6	28.5	26.2	33.0	26.1	13.3	12.5	11.5	10.7	8.6
Net debtor countries by debt- servicing experience												
Countries with arrears and/or												
rescheduling during 1994-1998	100.1	49.8	113.6	204.3	219.9	38.7	19.8	10.4	16.6	11.6	8.1	6.0
Other net debtor countries	27.5	11.0	14.0	14.1	18.6	18.0	13.9	9.6	8.3	5.0	5.0	4.3
Countries in transition	15.5	118.4	788.9	634.3	273.3	133.5	42.4	27.3	21.8	43.7	19.5	14.2
Central and eastern Europe		74.8	278.3	366.8	150.4	72.2	32.1	38.4	18.7	20.5	19.4	12.3
Excluding Belarus and Ukraine		34.0	104.8	85.1	47.5	24.8	23.3	41.4	17.0	10.9	10.7	7.1
Russia		156.1	1,734.7	874.7	307.4	197.4	47.6	14.7	27.7	85.9	20.5	15.9
Transcaucasus and Central Asia		193.8	949.2	1,428.7	1,800.7	265.4	80.8	33.0	13.1	15.5	16.3	17.9
Memorandum												
Median inflation rate												
Advanced economies	5.4	2.2	3.2	3.0	2.4	2.4	2.1	1.7	1.6	1.4	2.1	2.0
Developing countries	9.5	7.0	9.9	9.3	10.6	10.1	7.1	6.3	5.7	4.0	4.0	3.6
Countries in transition	11.9	155.2	839.1	472.3	131.6	39.2	24.1	14.8	10.0	8.1	7.9	5.2

Source: IMF (2000) World Economic Outlook, International Monetary Fund, Washington DC.

V

List of Annex I, Annex II, and Annex B Countries

List of Annex I Countries, UNFCCC

List of Annex II Countries, UNFCCC	
Austrolio	

	Australia
Australia	Austria
Austria	Belgium
Belarus <u>a</u> /	Canada
Belgium	Denmark
Bulgaria <u>a</u> /	European Union
Canada	Finland
Croatia*	France
Czech Republic <u>a</u> / *	Germany
Denmark	Greece
European Union	Iceland
Estonia <u>a</u> /	Ireland
Finland	Italy
France	Japan
Germany	Luxembourg
Greece	Netherlands
Hungary <u>a</u> /	New Zealand
Iceland	Norway
Ireland	Portugal
Italy	Spain
Japan	Sweden
Latvia <u>a</u> /	Switzerland
Liechtenstein*	Turkey
Lithuania <u>a</u> /	United Kingdom of Great Britain and Northern Ireland
Luxembourg	United States of America
Monaco*	
Netherlands	
New Zealand	
Norway	
Poland <u>a</u> /	
Portugal	
Romania <u>a</u> /	
Russian Federation <u>a</u> /	
Slovakia <u>a</u> /*	
Slovenia <u>a</u> /*	
Spain	
Sweden	
Switzerland	
Turkey	
Ukraine <u>a</u> /	
United Kingdom of Great Britain and Northern Ireland	
United States of America	

Note: Party included in Annex I means a Party included in Annex I to the Convention, as may be amended, or a Party which has made a notification under Article 4, paragraph 2(g), of the Convention.

<u>a</u>/ Countries that are undergoing the process of transition to a market economy.

^{*} Countries added to Annex I by an amendment that entered into force on 13 August 1998, pursuant to Decision 4/CP.3 adopted at CoP 3.

Source: Annex I to the United Nations Framework Convention on Climate Change, p. 29. Annex II to the United Nations Framework Convention on Climate Change, p. 30.

Party	Quantified emission limitation or reduction commitment (percentage of base year or period)
Australia	108
Austria	92
Belgium	92
Bulgaria*	92
Canada	94
Croatia*	95
Czech Republic*	92
Denmark	92
Estonia*	92
European Community	92
Finland	92
France	92
Germany	92
Greece	92
Hungary*	94
Iceland	110
Ireland	92
Italy	92
Japan	94
Latvia*	92
Liechtenstein	92
Lithuania*	92
Luxembourg	92
Monaco	92
Netherlands	92
New Zealand	100
Norway	101
Poland*	94
Portugal	92
Romania*	92
Russian Federation*	100
Slovakia*	92
Slovenia*	92
Spain	92
Sweden	92
Switzerland	92
Ukraine*	100
United Kingdom of Great Britain and Northern Ireland	92
United States of America	93

* Countries that are undergoing the process of transition to a market economy. Source: Annex B to the Kyoto Protocol to the Convention on Climate Change, p.28.

VI

List of Major IPCC Reports

Climate Change—The IPCC Scientific Assessment

The 1990 Report of the IPCC Scientific Assessment Working Group (also in Chinese, French, Russian, and Spanish)

Climate Change—The IPCC Impacts Assessment

The 1990 Report of the IPCC Impacts Assessment Working Group (also in Chinese, French, Russian, and Spanish)

Climate Change—The IPCC Response Strategies

The 1990 Report of the IPCC Response Strategies Working Group (also in Chinese, French, Russian, and Spanish)

Emissions Scenarios

Prepared for the IPCC Response Strategies Working Group, 1990

Assessment of the Vulnerability of Coastal Areas to Sea Level Rise–A Common Methodology 1991 (also in Arabic and French)

Climate Change 1992—The Supplementary Report to the IPCC Scientific Assessment The 1992 Report of the IPCC Scientific Assessment Working Group

Climate Change 1992—The Supplementary Report to the IPCC Impacts Assessment

The 1992 Report of the IPCC Impacts Assessment Working Group

Climate Change: The IPCC 1990 and 1992 Assessments

IPCC First Assessment Report Overview and Policymaker Summaries, and 1992 IPCC Supplement

Global Climate Change and the Rising Challenge of the Sea

Coastal Zone Management Subgroup of the IPCC Response Strategies Working Group, 1992

Report of the IPCC Country Studies Workshop, 1992

Preliminary Guidelines for Assessing Impacts of Climate Change, 1992

IPCC Guidelines for National Greenhouse Gas Inventories

Three volumes, 1994 (also in French, Russian, and Spanish)

IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations 1995 (also in Arabic, Chinese, French, Russian, and Spanish)

Climate Change 1994—Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, 1995

Climate Change 1995—The Science of Climate Change – Contribution of Working Group I to the Second Assessment Report, 1996

Climate Change 1995—Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses – Contribution of Working Group II to the Second Assessment Report, 1996

Climate Change 1995—Economic and Social Dimensions of Climate Change – Contribution of Working Group III to the Second Assessment Report, 1996

Climate Change 1995—IPCC Second Assessment Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the UN Framework Convention on Climate Change 1996 (also in Arabic, Chinese, French, Russian, and Spanish)

Technologies, Policies, and Measures for Mitigating Climate Change – IPCC Technical Paper I 1996 (also in French and Spanish)

An Introduction to Simple Climate Models used in the IPCC Second Assessment Report – IPCC Technical Paper II 1997 (also in French and Spanish)

Stabilization of Atmospheric Greenhouse Gases: Physical, Biological and Socio-economic Implications – IPCC Technical Paper III 1997 (also in French and Spanish)

Implications of Proposed CO₂ Emissions Limitations – IPCC Technical Paper IV 1997 (also in French and Spanish)

The Regional Impacts of Climate Change: An Assessment of Vulnerability – IPCC Special Report, 1998

Aviation and the Global Atmosphere - IPCC Special Report, 1999

Land Use, Land Use Changes and Forestry - IPCC Special Report, 2000

Methodological and Technological Issues in Technology Transfer - IPCC Special Report, 2000

Emissions Scenarios - IPCC Special Report, 2000

Climate Change 2001: The Scientific Basis, 2001

Climate Change 2001: Impacts, Adaptation, and Vulnerability, 2001

Climate Change 2001: Mitigation, 2001.

ENQUIRIES: IPCC Secretariat, c/o World Meteorological Organization, 7 bis, Avenue de la Paix, Case Postale 2300, 1211 Geneva 2, Switzerland

VII

Index

Index¹

A

Abatement policies see National and international policies

ial policies
362, 413, 427-429
651-657
52
69, 468
653
314
459
, 480, 612, 646, 653
107, 386, 465, 653
, 127, 142, 457, 653
480
365
8, 147, 467, 653-673
108-109
643, 646
, 398, 616, 654, 656
, 304, 427 , 660, 667
, 157, 160, 305-330 ,
, 414, 487, 522, 587
, 414, 487, 522, 587 -178, 184, 187, 199,
-178, 184, 187, 199,
-178, 184, 187, 199, , 306, 309, 319-320,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671
-178, 184, 187, 199,, 306, 309, 319-320,, 583, 640, 645, 671-430, 435, 640, 644
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 ,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671 0-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 6, 330, 384-385, 640 5, 436, 660, 672-673
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671 0-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671 0-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 6, 436, 660, 672-673 53, 78, 95-98 , 390,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323, 334, 485, 519, 581
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323, 334, 485, 519, 581
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 6, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323, 334, 485, 519, 581 97, 326 187, 220 , 222, 244,
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323, 334, 485, 519, 581 97, 326 187, 220 , 222, 244, , 409, 411, 575, 671
-178, 184, 187, 199, , 306, 309, 319-320, , 583, 640, 645, 671)-430, 435, 640, 644 , 328, 330, 384-385 , 522, 579-580 , 588 2, 323-327, 330, 384 327 7, 305, 324-325, 327 5, 330, 384-385, 640 5, 436, 660, 672-673 53, 78, 95-98 , 390, 487, 545-548 - 220 , 230, 265, 323, 334, 485, 519, 581 97, 326 187, 220 , 222, 244, , 409, 411, 575, 671 3, 246-248, 252, 29,

¹ This index refers to the main occurrences of key terms in the chapters of this Report and the Technical Summary, excluding the Summary for Policymakers, Executive Summaries, reference lists and title pages; numbers in bold refer to the main discussion on the term in the report.

355, 367

47, 373-387

44, 46, 158, 353, 366, 568, 645, 668, 672

124, 334, 471-472, 514, 614, 622, 624, 628

21, 35, 42, 91, 93, 96, 138, 142, 224, 306,

Anaerobic digestion		231-234
Ancillary benefits		
in agriculture		327, 579-580
in coal sector		571
conceptual and empi	rical evaluation	58, 60, 523-536
definition		9, 21
in forestry		326-327,
meaning and relevar	ce in energy sector studies	494
methodological aspe	cts	51-55, 460-463
in oil and gas indust	ry	576
in scenario evaluatio	n	472-473
sectoral		62-66, 565-594
Annex B countries	57-58, 60, 65, 136, 330, 4	493, 520, 543-544,
	570, 573-575, 578, 590, 5	594, 625, 662, 670
Annex I countries	24, 34, 36, 60, 62, 65, 79, 8	89-91, 95, 97, 124,
15	2-154, 160, 254-257, 260, 3	377, 386, 425-428,
434	4, 493, 506, 531, 539, 581,	618, 625, 628, 661
Annex II countries		60
Asia 39, 8	37, 97, 132, 139, 155, 157-1	58, 182, 187, 199,
233-234, 24	3-244, 246-248, 285, 306, 3	309, 317-318, 320,
323, 330, 429, 50	9, 570, 575, 577, 583, 588,	645, 665-666, 671
Assigned cmounts		60, 405, 502, 660
Autonomous Energy	Efficiency Improvement ((AEEI) 222, 474,
	528, 3	574, 592, 657, 665
Average costs see Cos	ts	
Avoided climate chan	ge 21,	58, 475, 482, 501
B		
Banking	49, 361-362, 379,	424, 623, 625-626
Barriers	44-48,	350-390 , 465-466
definition		12
economic		179, 351, 384, 667
financial 33, 44	, 46-48, 350-351, 354-355,	359-363 , 374-377,
	379, 381, 383, 386, 388-3	89, 410, 413, 469,
		569, 643, 645-646
income		48, 349
information provisio	n	354-355, 366
institutional	44, 352-353, 2	367, 384, 389, 419
market	54, 179, 1	378, 465, 476, 488

309, 326, 361, 435, 486, 523, 636, 641 Biofuels see Renewable energy Biological carbon reservoirs see Carbon sinks Biological options see Carbon sinks Biomass see Renewable energy Biomass integrated gasification combined cycle (BIGCC) 245, 256-258 Biotechnology see Technology

social, cultural, and behavioural norms

Benefit transfer see Valuation techniques

technology-specific

Baseline see Scenario

trade

Benchmark

Biodiversity

Biotechnology see Technology	
Borrowing	44, 360-361 , 626
Bottom-up models see Models	
Bubble	127-128, 405, 539-540 , 621, 665

Building(s sector)	26, 28-30, 33, 41, 47, 83, 100, 175-176, 179
182-189, 2	211, 213, 228, 247-248, 261, 264-265, 290-292
323, 350, 3	353, 358, 373-376 , 404, 412, 526, 549, 583, 657
Burden sharing	69, 123-128, 131, 140, 155, 160, 429
	616, 633, 651, 656, 668-67 3

С

Capacity	
building	23, 33, 36, 71, 89, 91, 105, 144, 161, 181, 295,
	312, 330, 413, 466, 487, 490, 494, 503, 632, 643, 647
human	48, 53, 349, 466, 484-485, 487
institutio	nal 35-36, 87, 384, 413, 466, 484, 490, 494, 647
Capital	
availabil	53, 374, 379 , 384, 478
costs	80, 238-240, 242, 245, 249, 252-255, 383, 389, 480, 588
flows	58, 362, 480-481, 503, 536, 539, 541, 662
human	44, 48, 81, 93-94, 103, 356, 358, 364, 384, 483-484, 636
internatio	nal 439, 481, 487, 540-541
natural	93-94, 107, 484
physical	93, 358, 364, 526
social	86, 93 -94, 96, 102-103, 358, 363-364, 369, 390,
	477-478, 484, 636, 673

Carbon/Carbon dioxide

accumulation	41, 307-308, 310, 315, 324, 414
atmospheric	42, 305, 331-332, 476, 607, 615
budget	42, 61-62, 313, 545, 549
capture see C	Carbon sequestration
credits	226, 331-332, 335
storage	41, 149, 323, 325, 330
flows	307 , 330
intensity	22, 26, 63, 88-89, 132, 135-136, 154-155,
	160, 183, 188-189, 212, 388, 411, 509, 542, 563
leakage	49, 58-59, 61, 65, 331 , 503, 539-543 , 568, 571, 622
offsets	245, 331, 645
pool	41, 307
removal	26, 149, 159, 249-252 , 414, 615
sequestration	31, 35, 41, 58, 61, 98, 132, 152, 158, 160,
179-	180, 225, 227, 230, 249-252 , 262, 265, 305-335 , 374,
	476, 580
sinks	44, 51, 63, 85, 90, 305-335 , 457, 459, 476, 522,
	538, 572, 641
stock	307, 310, 314
substitution	308, 323
tax see Tax	

Clean Development Mechanism (CDM) 50, 53, 57, 60, 82, 86, 89, 91-92, 105, 128, 297, 331, 404-405, **425-428**, 431, 433-434, 471-472, 478, 492-493, 510, 512, 538-539, 568, 570, 574-575, 626, 634, 645-646, 660-667 Certified Emission Reductions (CERs) 50, 405, **426-427**, 568, 660

 CFCs
 29, 40, 124-126, 183, 281, 283, 286, 289, 292-295, 407, 617

 CH4 see Methane
 Chlorofluorocarbons see CFCs

 CITES
 435-436

 Climate
 agreement

 convention see UNFCCC
 621, 624-628

 models
 121, 315

negotiations 66, 91, 123, 621-622, 626 policies see National and international policies Coal 26-29, 31-32, 36, 39-41, 62-63, 65, 158-159, 197, 210, 229, 237, 245, 250-259, 265, 381, 388, 408-411, 421, 462, 508, 565-571, 646 clean coal 36, 253, 487, 570-571 coal-bed methane see Methane coal-fired power 40, 253, 256, 259 demand 570, 575, 585 gasification 250 price 253, 569 production 36, 410, 562, 568, 570-571, 576 sector 63, 508, 563, 568-571 switching/substitution 181, 212-213, 262-263 technologies 39, 237-240, 421, 571 **Coastal Areas** 253, 468 **Co-benefits**, *see* also Ancillary benefits conceptual framework for analysis of 523-524 definition 21, 51 460-462, 472-473 methodological aspect from reduced road traffic 585-586 Cogeneration 41, 47, 185, 209-211, 220, 229, 238-240, 244, 253, 379, 381-382, 384, 390, 411, 575 Combined cycle gas turbine (CCGT) 235, 238-240, 253-259 **Commercial financing institutions** 46, 347 **Commercial sector** 29-30, 184, 187-188, 261, 373, 389 Commercialization 129, 287, 374-375, 384, 424, 647 Common good 639,650 Commons 90-91, 361, 370, 621, 624, 639 Compliance 49-50, 67-68, 231, 295, 358, 365, 380, 404, 408, 412-415, 417-418, 422, 425-427, 432-435, 437, 479, 514, 533, 550, 615, 625-626, **630-634**, 648, 660-661, 667-668 230-232, 234 Composting Computable General Equilibrium models see Models CoP (Conference of the Parties of the UNFCCC) 35, 282, 406, 428, 432-433, 642 Consistency 71, 203, 209, 381, 436, 469, 471, 551, 609 Constraints see Barriers **Consumer surplus** 463, 504, 506, 513 **Consumption patterns** 46, 48, 68, 71, 135, 187, 355-356, 367-373, 470, 485, 488, 503, 528, 637-639 Contingent valuation see Valuation techniques **Contraction and Convergence** 90,670 Co-operative mechanisms see Kyoto Mechanisms **Cost-benefit analysis** 51, 67, 160, 460, 613 Cost curves 55, 81, 200-201, 485, 510, **513-514**, 538 Cost effectiveness 20, 49, 283, 285, 288, 293, 472, 615 **Costing methodologies** 51, 53, 457-498, 523 Costs abatement/mitigation 22, 43, 50, 55-58, 61-62, 68-69, 81-82, 149, 160-161, 180, 200, 255, 260, 287-288, 323, 328, 413-414, 425, 430, 434-435, 438-440, 457-594, 551-552, 614, 618, 624-626, 628-629, 661, 669, 672-675 adaptation 52, 69, 427, 458, 467, 470, 625, 627, 654, 673 administrative 416, 422, 593, 672 aggregate 59, 61, 82, 418, 439

assessment	51, 54, 81, 457-460, 465-466, 472-473,
	477, 486, 488, 503
average	203, 509
gross	53-55, 57-58, 472, 516, 550
implementation	40, 52, 381, 457, 459, 465-466, 469,
	474-475, 494
macroeconomi	135, 150, 152, 458, 594, 654
marginal	53, 55, 60, 67, 203, 351, 442, 478-479,
	506-507, 509, 511-512, 525, 615, 654, 670
national	54, 69, 503-552 , 656
net	52-53, 180, 215, 439, 462, 472-474, 503, 513
opportunity	21, 43, 51, 77, 81, 83, 108, 305,
	328-329, 466, 479, 614
potential	260, 593
private	52, 328, 351, 435, 461-462, 477, 525, 532
opportunity	21, 43, 51, 77, 81, 83, 108, 305, 3
	28-329, 466, 479, 614
regional	503-552
sectoral	62, 565-594
sequestration	328-329
social	243, 332, 358-359, 435, 459, 462, 476, 478,
43	36-487, 512, 525, 532, 550-551, 583, 585, 644, 656
transaction	52, 354, 358-359, 364-365, 381,
	422-424, 429, 465, 494, 512, 593, 645, 660, 667
Countries with I	Economies in Transition (EITs) 26-28, 38, 53,
	175, 183, 187, 199, 222, 246, 294-297, 351,
	367, 375, 386-387, 409, 411, 438, 440, 457,
	484-487 , 495, 503, 634, 644
Crop	
cultivars/specie	s/varieties 324-325, 580
energy	38, 41, 63, 179, 225-229 , 265
forest	226, 229, 322,
oil/fibre/food	197, 225, 229
price support	384
production	226, 327, 384
residues	229, 324, 579
rotation	325
tropical	53, 385
yields	224, 225, 324, 327, 580
Cropland see Ag	riculture
D	
Debt	309, 359, 361, 387, 517-518, 569, 626, 670
Decision-makers	/decision-making 66-69, 103-105, 408,
	459-463, 605-677
Decoupling	19-20, 24, 79, 89, 98-103 , 207, 489, 548, 614
Deforestation	42-43, 83, 90-91, 96, 101, 222, 224, 229, 305-306,
	9 , 312, 316, 319-320, 322, 326, 330, 332, 385, 588
Demand-Side M	anagement (DSM) 374-376, 411, 420, 422,
	443-465-466, 486, 507, 587
Dematerializatio	n 122, 131, 154, 159, 207, <i>see</i> also Decoupling
Demography/De	mographic change 58, 144, 535
Desertification	96, 227, 316, 325-326, 634, 636, 641-642
Development	
41	71 06 09 122 151 470 477 502 571

paths 71, 96, 98 , 122, 151, 470, 477, 503, 5	
paths 71, 96, 98 , 122, 151, 470, 477, 503, 5	71
patterns 99, 147, 458, 469-470, 483-484, 486, 495, 637, 6	11

Index

Development, Equity a	and Sustainability (DES)	19, 21, 41, 48,
	53, 71, 77-109 , 120, 12	3, 142-143, 161,
316, 362, 385, 387, 457, 460, 477-478, 636		
Differentiated responsibilities 19, 77, 86, 437		
Discount rate/discounting 87, 43-44, 52, 70, 80, 82, 211, 214-216		2, 211, 214-216,
220-221, 240, 242, 246, 249, 258-259, 288, 328, 351-353,		
360, 364, 457-459, 466-467 , 480, 504, 541, 550,		0, 504, 541, 550,
	614-6	15, 657-659, 669
Distributional effects	56, 77, 85, 87, 413, 478, 5	19, 521-522 , 587
Domestic		
action		430, 539, 620
emissions trading see Emissions Trading		
policy instruments	50, 42	25, 434, 441, 512
Double Bubble	1	27-128, 539-540
Double dividend	52-53, 55-56, 361, 458, 47	2-473 , 492, 513,
	516-520 , 53	88, 593, 659, 665
Driving forces/drivers see Scenario		

E

Ecological du	
Econometric : Economic	analysis 424
accounting	462, 636
activity	27, 57, 63, 82, 90, 94, 106, 139-142, 388,
-	, 463, 475, 567, 570-571, 574, 579, 585, 614, 636-637
agents	94, 366, 410, 488, 506, 512, 591, 637, 655
benefits	63, 182, 253, 379, 413, 435, 570, 580, 587, 591,
001101115	640, 646
cost 43.56	6, 81, 149, 440, 458, 490, 494, 507, 514, 591, 593, 626
effects	33, 49, 60, 407, 488, 539, 548, 568-569
efficiency	67, 234, 413, 462-463, 567, 655, 660
impacts	84, 306, 441, 458-459, 504, 523, 537-538,
	544, 568, 589-590, 592-593
incentives	35, 160, 182, 285, 288, 312, 322, 384, 465, 495, 621
models	54, 328, 356, 434, 488-489, 491, 519, 565
policies	52, 94, 389, 422, 469, 472, 504, 641
potential see	Potential
returns	311, 441, 472
Economies in	
Economics in	Transition see Countries with Economies in
Transition	Iransition see Countries with Economies in
	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307,
Transition	
Transition	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307,
Transition	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464,
Transition Ecosystems Education	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659
Transition Ecosystems Education 370 Elasticity	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658
Transition Ecosystems Education 37(19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658
Transition Ecosystems Education 370 Elasticity	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price Electricity costs	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535 477, 487, 513-514, 573, 592 246
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price Electricity costs demand	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and tion 493, 517 482-483, 534-535 477, 487, 513-514, 573, 592 246 150, 209, 422, 577, 579
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price Electricity costs demand	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535 477, 487, 513-514, 573, 592 246 150, 209, 422, 577, 579 eneration 39, 63, 180, 235, 237-252 , 253-2549, 264,
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price Electricity costs demand electricity ge	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535 477, 487, 513-514, 573, 592 246 150, 209, 422, 577, 579 eneration 39, 63, 180, 235, 237-252 , 253-2549, 264, 383, 410-411, 422-423, 462-464, 568, 577-578, 608
Transition Ecosystems Education 37(Elasticity energy dema fuel substitu income price Electricity costs demand	19, 37, 41, 43-44, 54, 65, 77, 96, 224, 305-307, 309-311, 313-316, 322-324, 326, 332, 356, 464, 483, 495, 608, 635, 659 62, 70, 87, 103, 106, 227, 229, 350, 360, 368, 0-371, 387, 420, 490, 636, 638-640, 642-643, 652, 658 and 641 tion 493, 517 482-483, 534-535 477, 487, 513-514, 573, 592 246 150, 209, 422, 577, 579 eneration 39, 63, 180, 235, 237-252 , 253-2549, 264,

savings	412, 510-51	1
sector	65, 159, 235, 252, 375, 411, 420, 525, 530	
sector	533, 535, 568, 578-57	
1		
supply	101, 235, 252, 384, 422, 568-56	
use	26, 188, 220, 247, 57	/
Emissions		_
anthropog	-	
cap	41	
permits	331-332, 408, 536, 67	
quotas	426, 431, 536, 61	
targets	23, 331, 417, 520, 624-625, 628, 67	5
tax see Ta	ax	
trends	85, 182, 264, 539, 61	4
Emissions	trading 50, 58-60, 330-33	1
as part of	f a flexible instruments regime 660-661, 668, 670),
	672-67	3
cost savir	ng through 512, 536, 537-539, 542-54	3
definition	40	5
internatio	onal 50, 82, 425-426 , 430, 433-434, 440, 493	3,
	503, 568, 574, 576, 593, 62	6
national/c		
	Reduction Units (ERUs) 50, 82, 405, 426-435, 66	
Employme		
	also Energy efficiency and Energy Use	
conservat		3
conserva	368, 380, 412, 420, 526, 581, 640-64	
consumpt		
-	183-184, 187, 192, 194, 200, 205-207, 211, 216-221, 230	
	248, 250, 282, 285-286, 291, 365, 380, 388-389, 409-410	
	412, 418-419, 469-470, 487-488, 490, 528, 570, 583, 64	I
content		7
	27, 49, 63, 175, 222, 234, 245, 404, 414, 563, 63	
costs .	21, 47, 364, 367, 374-375, 381, 419, 481, 49	3
cropping	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31	3 5
	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213	3 5 3,
cropping	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483	3 5 3, 5,
cropping demand	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64	3 5 3, 5, 1
cropping	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56	3 5 3, 5, 1 9
cropping demand final intensity	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190	3 5 3, 5, 1 9),
cropping demand final intensity	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56	3 5 3, 5, 1 9),
cropping demand final intensity	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190	3 5 3, 5, 1 9 0, 7,
cropping demand final intensity	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377	3 5 3, 5, 1 9 0, 7, 3
cropping demand final intensity	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377 380, 409-410, 474, 508-509, 56	3 5 3, 5, 1 9 0, 7, 3 8
cropping demand final intensity markets prices	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229 , 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 199 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48	3 5 3, 5, 1 9 0, 7, 3 8 9,
cropping demand final intensity markets prices	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389	3 5 3, 5, 1 9 0, 7, 3 8 9, 5
cropping demand final intensity markets prices 4	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64	3 5 3, 5, 1 9 0, 7, 3 8 9, 5 8
cropping demand final intensity markets prices 4 products	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48	353,5,190,7,380,587,
cropping demand final intensity markets prices 4 products	$\begin{array}{c} 21, 47, 364, 367, 374\text{-}375, 381, 419, 481, 49\\ 222\text{-}229, 31\\ 29, 129, 148, 156, 158, 175, 189, 192\text{-}193, 207, 213\\ 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483\\ 488\text{-}489, 494, 504, 525, 537, 569\text{-}570, 64\\ 25, 144, 148\text{-}149, 155\text{-}156, 158, 219\text{-}220, 547, 56\\ 26, 55, 63, 131\text{-}133, 135, 154\text{-}155, 160, 175, 188, 199\\ 192\text{-}193, 198\text{-}199, 207\text{-}208, 220, 224\text{-}225, 359, 376\text{-}377\\ 380, 409\text{-}410, 474, 508\text{-}509, 56\\ 49, 181, 409\text{-}411, 413, 48\\ 26, 46, 84, 131, 219, 359, 364\text{-}365, 379\text{-}380, 388\text{-}389\\ 10, 412, 423, 442\text{-}443, 465, 474, 521, 529, 538, 575, 64\\ 410, 48\\ 46\text{-}47, 184, 200, 203, 220, 245, 353\text{-}354, 366\\ 375\text{-}380, 383, 411\text{-}41\end{array}$	3 5 3, 5, 1 9 0, 7, 3 8 9, 5 8 7, 2
cropping demand final intensity markets prices 4 products savings	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 36 375-380, 383, 411-41 ompanies 46, 360, 64	3 5 3, 5, 1 9), 7, 3 8 9, 5 8 7, 2 5
cropping demand final intensity markets prices 4 products savings service co supply se	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 36 375-380, 383, 411-41 ompanies 46, 360, 64	3 5 3, 5, 1 9), 7, 3 8 9, 5 8 7, 2 5
cropping demand final intensity markets prices 4 products savings service co supply se	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 36 375-380, 383, 411-41 ompanies 46, 360, 64 ector 28, 39, 47, 179-180, 376, 380-381, 389, 41	3 5 3, 5, 1 9 0, 7, 3 8 9, 5 8 7, 2 5 0
cropping demand final intensity markets prices 4 products savings service co supply se subsidies	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-377 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 367 375-380, 383, 411-41 ompanies 46, 360, 64 set or 28, 39, 47, 179-180, 376, 380-381, 389, 41 <i>see</i> Subsidies	3 5 3, 5, 1 9), 7, 3 8 9, 5 8 7, 2 5 0 3,
cropping demand final intensity markets prices 4 products savings service co supply se subsidies	$\begin{array}{c} 21, 47, 364, 367, 374-375, 381, 419, 481, 49\\ 222-229, 31\\ 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213\\ 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483\\ 488-489, 494, 504, 525, 537, 569-570, 64\\ 25, 144, 148-149, 155-156, 158, 219-220, 547, 56\\ 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190\\ 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37\\ 380, 409-410, 474, 508-509, 56\\ 49, 181, 409-411, 413, 48\\ 26, 46, 84, 131, 219, 359, 364-365, 379-380, 388-389\\ 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64\\ 410, 48\\ 46-47, 184, 200, 203, 220, 245, 353-354, 36\\ 375-380, 383, 411-41\\ ompanies 46, 360, 64\\ extor 28, 39, 47, 179-180, 376, 380-381, 389, 41\\ see Subsidies\\ 23, 61, 66, 129, 144, 159, 213, 488-489, 504, 533\\ 550-551, 591, 613, 65\\ \end{array}$	3 5 3, 5, 1 9), 7, 3 8 9, 5 8 7, 2 5 0 3,
cropping demand final intensity markets prices 4 products savings service co supply se subsidies system tax <i>see</i> Ta	$\begin{array}{c} 21, 47, 364, 367, 374-375, 381, 419, 481, 49\\ 222-229, 31\\ 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213\\ 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483\\ 488-489, 494, 504, 525, 537, 569-570, 64\\ 25, 144, 148-149, 155-156, 158, 219-220, 547, 56\\ 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190\\ 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37\\ 380, 409-410, 474, 508-509, 56\\ 49, 181, 409-411, 413, 48\\ 26, 46, 84, 131, 219, 359, 364-365, 379-380, 388-389\\ 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64\\ 410, 48\\ 46-47, 184, 200, 203, 220, 245, 353-354, 36\\ 375-380, 383, 411-41\\ ompanies 46, 360, 64\\ extor 28, 39, 47, 179-180, 376, 380-381, 389, 41\\ see Subsidies\\ 23, 61, 66, 129, 144, 159, 213, 488-489, 504, 538\\ 550-551, 591, 613, 65\\ ax\\ \end{array}$	3 5 3, 5, 1 9), 7, 3 8 9, 5 8 7, 2 5 0 3,
cropping demand final intensity markets prices 4 products savings service co supply se subsidies system	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 36 375-380, 383, 411-41 ompanies 46, 360, 64 ector 28, 39, 47, 179-180, 376, 380-381, 389, 41 <i>see</i> Subsidies 23, 61, 66, 129, 144, 159, 213, 488-489, 504, 533 550-551, 591, 613, 65 ax iciency	353,5,190,7,389,587,250 3,4
cropping demand final intensity markets prices 4 products savings service co supply se subsidies system tax <i>see</i> Ta Energy effi	21, 47, 364, 367, 374-375, 381, 419, 481, 49 222-229, 31 29, 129, 148, 156, 158, 175, 189, 192-193, 207, 213 219, 222, 237, 244, 350, 378, 410, 438, 466, 477, 483 488-489, 494, 504, 525, 537, 569-570, 64 25, 144, 148-149, 155-156, 158, 219-220, 547, 56 26, 55, 63, 131-133, 135, 154-155, 160, 175, 188, 190 192-193, 198-199, 207-208, 220, 224-225, 359, 376-37 380, 409-410, 474, 508-509, 56 49, 181, 409-411, 413, 48 26, 46, 84, 131, 219, 359 , 364-365, 379-380, 388-389 10, 412, 423, 442-443, 465, 474, 521, 529, 538, 575, 64 410, 48 46-47, 184, 200, 203, 220, 245, 353-354, 36 375-380, 383, 411-41 ompanies 46, 360, 64 ector 28, 39, 47, 179-180, 376, 380-381, 389, 41 <i>see</i> Subsidies 23, 61, 66, 129, 144, 159, 213, 488-489, 504, 533 550-551, 591, 613, 65 ax iciency	3 3 5 3 5 1 9 7 3 8 7 2 5 8 7 2 5 3 4

improvemer	ts 25, 34, 38, 41, 60, 63, 68, 132, 135, 155, 159-160,
	182, 184-185, 188, 190-192, 198, 203, 207, 211-213,
	219-222, 265, 360, 365, 376, 379-380, 422, 470, 510,
	532, 538, 567, 587, 591, 640-641, 665
index	216-219
indicators	216, 420
levels	216
measures	47, 188, 379
options	41, 265, 510
potential	38, 41, 188, 221, 265, 376
programmes	
regulations	50 181 200 275 412 426
standards	50, 181, 200, 375, 412, 436
technologies trends	140, 193 183, 192
Energy use	185, 192
domestic	588
final	25, 155-156, 220, 547
household	187, 583
primary	27, 175-178, 182-183, 186-188, 223
total	27, 175 176, 162 163, 166 166, 225
transport	65, 190-193, 203, 583
trends in	16, 27
Environment	
agreements	50-51, 363, 417-418, 432, 435, 621-622,
	626, 628, 630-631, 634, 668
benefits	44, 58, 224, 245, 327, 353, 359, 381, 436,
	473, 520, 523, 525, 574, 584, 588, 625-628
costs	44, 326-327, 334, 352, 378, 413, 427, 436, 587
degradation	123, 138
effectivenes	s 13, 49, 59, 406, 417, 421, 433, 539,
	542, 622, 627, 660, 667
goals	42, 108, 193, 361
impacts	36, 40, 42-44, 62, 142, 224, 243, 305, 334, 353,
	363, 378, 383, 460-461, 463, 469, 474, 550, 565, 593
labelling	50, 420-421
legislation	47, 380, 382, 639-640
performance	
policy	150, 363, 407, 412-413, 417, 420, 424, 438,
	442, 473, 484, 503, 581, 593, 606, 622, 636, 661
protection	23, 46, 145, 150, 181, 199, 225, 234, 366,
	375, 388, 408, 429, 432, 435, 441, 580, 632, 640, 660
quality	22, 53, 100, 138-142, 407, 441, 463-464, 475,
	478, 584, 639, 646
regulation	51, 193, 358, 362-363, 390, 411, 413-414,
• 1	435, 438, 481, 521, 593
risks	62, 225, 360, 383, 502
services	326, 329
taxes see T	
Environmenta	ally Sound Technologies (ESTs) 45-47, 50, 59, 61,
Fauity 10	348, 351, 378, 384, 429-430, 641, 643-646 23, 51, 53, 66, 71, 84-97 , 103, 104, 482,483 , 667,673
	D-23, 51, 53, 66-71, 84-97 , 103-104, 482-483 , 667-673 n in scenarios 138-142, 145
egalitarian a	
-	naking analysis 615-618, 620-621, 627-630, 660
	nal policy instruments 438-439

155-156, 483, 494, 634, 658

in stabilization analysis

in sustainabl	le development	84-97
institutional	structure and	329
intergenerati	ional	70, 87, 133, 466, 478, 482
international	l	142, 161, 672
methodological considerations		477-478, 482-483
principles ar	nd interpretations	669-673
Europe	30, 33, 36, 38-39, 132,	191-192, 200, 206, 215-216,
224, 226-229, 252, 261, 287-293, 507, 514, 516-517, 52		293, 507, 514, 516-517, 525,
	529, 5	534, 569, 580, 584, 638, 661,
Central		42, 309, 388-389, 586
Eastern	57, 97, 133,	158, 247-248, 312, 361, 388,
	412-	413, 429, 439, 538, 671-672
Western	42, 97, 216, 2	221 , 237, 242, 246-248, 288,
	3	303, 310, 439, 505, 526, 532,
Externalities	46, 48, 106, 1	327, 351, 355, 358-359, 363,
	366-367, 371, 378-380, 3	884, 406, 409, 412, 414, 420,
		438, 462-464 , 534, 654, 668

F

Fairness 2	0, 77-78, 87 , 593,	606, 615, 617, 627, 629, 668-672
Fertilizer	30-31, 39, 2	213, 216, 220, 222-224, 227, 231,
		261-262, 327, 384
Final energy see	Energy	
Financial sector		487, 645
First Assessmen	t Report	77, 121
Fiscal systems		53, 407, 441, 475
Flexibility mech	anisms see Kyoto	mechanisms
Foreign direct in	vestment (FDI)	180, 363, 581, 644-645
Forests		35, 37, 41-43
boreal		305, 373
crops		226, 229
conservation		43, 309, 330, 385
disturbance		311
fires		306, 309
management	37, 41-43,	129, 309-312, 316-322, 329-330,
		385-386, 476, 633, 653
natural		311, 313, 322, 326, 334
residues		243-245, 259
temperate		42, 305
tropical		37, 43, 305-306, 320, 373
Forestry (sector)) 19, 3	35, 40, 42-43, 46, 48, 63, 68, 224,
		384-386 , 579-580 , 588, 566, 590
barriers for mit	tigation in	385-386
carbon storage	capacity of	251
investment		360
mitigation opti	ons	305-334
Fossil fuel reserv	ves see Reserves	
Free Riding		50, 417, 615, 621
Fuel		
cells 26	5, 36, 39, 79, 158-1	60, 180, 194-198 , 201, 203, 231,
	233,	235, 239-240 , 253, 353, 377, 551
mix		53, 245, 411, 477, 487, 493, 577
switching	28, 38, 40, 1	82, 212 , 216, 255, 264, 362, 389,
		510, 538, 570, 575, 587, 594
Full-cost pricing	,	34, 645

Game theory	438, 609-610, 618, 621-622, 628-630
General Equilibrium Ana	
Geo-engineering	37, 41, 43-44, 71, 332-334
	7, 62, 65, 77, 90, 106, 136, 159, 179, 191,
8	31-282, 285, 287, 291, 418, 431, 522, 579,
, ,	583, 613, 633, 647-648, 668-669
Global Warming Potentia	d (GWP) 136, 179, 191, 206,
2	13-214, 230, 233, 281-282, 291, 293-295,
	297, 522, 574, 659, 664, 674-675
Globalization	138, 141, 144, 387, 390, 581, 646
Governance	22, 87, 94, 96, 106, 137-138, 141-142,
	361, 430, 646, 650
Government	
authority	404, 417
borrowing	44, 361
expenditure	590
funding	421, 430
host	426-428, 433
interventions	28
investment	359, 427
national	405, 415, 435
objectives	407
offices	420
officials/actors	408, 652
	National and international policies 26, 58,
88, 106, 17	5, 181, 191, 237, 293, 353, 359, 361, 483,
	507, 569, 584, 637, 649-650, 656,
procurement	47, 361, 375-376, 646
regulations revenues	35, 285, 358, 362, 412, 535 49, 472, 567
spending	49, 472, 367 49, 361, 378, 404
subsidies <i>see</i> Subsidies	47, 501, 578, 404
Grassland	324-326
Green financial institutio	
Greenhouse Gas (GHG)	
concentrations	19, 54, 501, 608, 616
	7, 60, 71, 97, 123, 139, 175-300, 409, 492
mitigation	36, 40, 54, 58, 65, 77, 184, 199, 242, 531
policies see National and	
-	concentrations see Stabilization
Gross Domestic Product	26, 89, 98, 131, 175, 406,
	459, 503, 565, 616

GWP see Global Warming Potential

Η

Halocarbons	37, 126, 129, 214-215, 281-297
HFCs	26, 37, 40, 175, 179, 182-183, 189, 205, 213,
	215, 281-297 , 404, 407, 414-415
Hot air	57, 408, 425-426, 538-539, 661, 663, 665-666
Households (sector)	33, 46, 56, 62-63, 389, 418,
	424, 565, 586-587, 656
ancillary impacts o	on 463
barriers and opport	tunities 373-375
distributional impa	ct on 84, 87, 102, 567

Index

economic impact on 516-517, 519-522, see also Residential and Building sectors Human welfare see Welfare Hydrocarbons see Non-Methane Volatile Organic Compounds Hydrochlorofluorocarbons see HCFCs Hydrofluorocarbons see HFCs Hydropower see Renewable energy

I

Income classes 482, 521; see also Distributional effects **Income elasticity** 528, 534-535 Induced technological change 60-62, 550-551, 658 Industrial ecology 99 Industrialization 27, 387, 637, 641 Industry see also Manufacturing 27, 211-212, 220-221, 380 heavy light 205, 211, 221 sector 27-28, 34, 38, 47, 131, 177, 184, 206-222, 351, 373, 378-380, 672 Inertia 48, 70, 376, 378, 509, 539, 550-552, 612-613, 657-659, 677 and uncertainty 612, 657, 677 in capital stock 70, 550, 657, 659 in energy/economic systems 66, 550, 613, 657 in technological system/innovation 539, 550 in transport system 376 institutional/social 48, 70, 349 Inflation 53, 364, 407, **413**, 428, 478, **480**, 645 Information campaigns 50, 375, 420 dissemination 351, 379-380, 420 imperfect 47, 50, 351, 353, 374-375, 402 lack of 379 Innovation 47, 49, 53, 99, 138, 140-141, 149, 363, 407, 414, 421, 625-627, 634, 637, 650, 667 definition 441 policies 68, 356, 469, 634 research 366 social see social innovation technological 26, 62, 68, 179-181, 355-358, 369, 425, 458, 471, 551, 570, 620, 643, 646-647 Instruments see National and international policies 46-47, 64, 83-84, 91, 360, 383, 432-433, 574, 653 Insurance Integrated assessment 13, 66, 71, 145, 223, 457, 459, 469, 490, 494, 572, 612-613, 616, 655 **Intellectual Property Rights** 35-36, 358, 365, 385, 387, 644 **Interaction effect** 441, 472-473, 532 Interest rates 360-361, 388, 410, 467, 469, 538, 645 Internal combustion engine (ICE) 190, 194, 196, 201, 225, 289 International agreements 67, 105, 431-432, 481, 620-621, 626, 631-633, 660-661, 668 **International Emissions Trading** (IET) see Emissions Trading International trade 44, 49, 57-58, 77, 82, 94, 158, 311, 332, 406, 414, 418, 435-438, 480-481, 504, 539, 541, 574, 581, 589, 634 Investments capital 243, 245, 359, 384, 585 costs 100, 243, 319, 376, 383, 423, 504, 551 decisions 62, 323, 351, 367, 506, 549, 581

flows	180, 645
foreign	365, 387, 409, 541
foreign direct see F	DI 581, 644
green	360
opportunities	364, 480
policies	199, 390, 645
portfolio	80, 360
priorities	47, 349, 379
private	44, 94, 347, 359/361, 393, 424, 427
public/government	361, 444, 496, 589
R & D	49, 70, 356, 359, 442, 551, 589, 646, 657-658

J

Joint Implementation (JI) 49-50, 66, 82, 105, 330-331, 385, 404-405, 425-428, 433-435, 471-472, 492-493, 568, 575, 590, 593, 627, 634, 645, 660-661, 667, 670

K

Kaya identity	88, 131, 142, 470	
Kyoto Protocol		
accession to	615	
Annex B countries of	424, 625	
commitment	24, 49, 152-153, 160, 418, 433, 667, 670	
costs for sectors	63-65, 567, 571, 578, 581	
costs of compliance	55-57, 58-59, 60, 88-89, 514-522, 541-543	
coverage of GHGs	136, 191, 205-206, 260, 281-282	
implementation of	51, 57, 615, 633, 667	
mechanisms	49-50, 181, 297, 405-406, 416, 424-438 ,	
	634, 644, 645, 6687	
mechanisms see Clean Development Mechanism, International		
Emissions Trading, Joi	int Implementation	

targets 36, 60, 127-128, 152, 521, 537-543, 581, 661, 666

L

Land		
clearance	225	
management	35, 41-42, 310-311	
tenure	48, 309, 334, 354, 385	
Land use 19	, 21-22, 26, 35, 39, 42-43, 122, 135, 159-160,	
19	99-200, 224-227, 306-331, 476, 523, 633, 672	
change	19, 27, 43, 82-83, 334, 384-385, 608	
regulation	48	
Landfill management	see Waste management	
Landscape	306-308, 325-326	
Latin America see Am	nerica	
Leakage see carbon le	akage	
Learning by doing	358, 366, 551, 640, 657	
LESS (Low CO ₂ Emi	tting energy Supply System) 129	
Liability 90-91, 28	8, 291, 332, 358, 415, 426, 428, 432-433, 462	
Liberalization/privatization of energy markets 252-253, 410-411		
Lifestyle	26, 48, 142, 159, 349, 493-494, 637-640	
Liquid natural gas (L	NG) 411, 585	
Liquid petroleum gas	(LPG) 187, 250, 296, 374, 585	
Local air pollution	53, 64, 460, 472-473, 523, 585, 608	
Lock-In	47, 62, 70, 180, 357 , 377-378, 551, 657-658	
Logging	101, 306-322, 360, 386	
Low-carbon energy	22, 25, 135-136, 159-160	

Μ

171	
Macroeconomic	
analysis	458, 469
conditions	44, 389, 645
costs see Costs	
effects	452, 457, 478, 565
indicators	452, 478
policy	484
Management techniques	223, 226-227, 229
Manufacturing	27, 30, 38-39, 62-63, 181, 203-222 ,
247-248, 261, 2	282-297, 419, 481, 567, 580-581, 646
Marginal Abatement Costs see Costs	

Market	nent Costs see Costs
capital	351, 470
-	
deregulation distortions	239, 380, 411
equilibrium	443, 487
failure	328 50 262 272 281 402 461 462 502 551 670
	50, 362, 372, 381, 402, 461-462, 503, 551, 670
forces	297, 311, 328, 360, 386, 462
imperfections	53, 55, 69, 351, 354-355, 475, 487, 491-492,
lahaun	503, 507, 567, 591, 667 70, 474, 484, 487, 491, 517, 534, 658
labour liberalization	
penetration	139, 173
<u>^</u>	194, 255, 260, 294, 351, 360, 422
potential	44, 189, 201, 229, 239, 243, 247, 350-398 ,
	406, 419, 476
power	59-60, 64, 416, 425, 539, 573-574, 667
peform	389 354, 364
research	
structure	33, 44, 47, 354-355, 363, 374, 378, 389, 437, 442
value	287, 351, 360, 416
Material	20 28 212 212 216 222 261
efficiency substitution	30, 38, 212-213, 216, 222, 261
	38, 197, 212-213, 324
	tional and international policies
Methane (CH_4) clathrates	22, 124, 183, 373, 384, 522, 574, 608
coal-bed	27, 235, 237
emissions	29, 36, 179-180, 235, 250-252
landfill	48, 90, 224, 228, 230-233, 325, 415, 435
	31, 36, 230-231, 262, 264
recovery	36, 231, 234, 264
Misplaced incent Mitigation	tives 33, 46-48, 353-354, 365, 367, 374
action	51 01 282 450 600 651 672
	51, 91, 383, 459, 609, 651, 673 tional and international policies
· ·	41, 53, 55, 135, 242255, 315-324, 334, 376, 484,
scenarios	21-22, 24-25, 96, 115-161, 486, 493, 545, 592
	20, 78, 85, 376, 435, 471, 547, 589
strategy	
Mitigative capac	ity 21, 45, 71, 77, 79, 105-109, 034
Model	54 121 145 474 488 400 500 512 507 508
bottom-up	54, 131, 145, 474, 488-490, 590-512, 507-508
-	eneral Equilibrium 488, 591
Input-Output	54 55 66 457 460 400 655
Integrated Asse Keynesian	ssment 66, 457, 469, 490, 655 469, 517
macroeconomic	
top-down	54, 66, 131, 474, 477, 489-490, 572, 581, 590-591

Monetary value		331, 486
Montreal Protocol	40, 183, 205, 215, 281-	-286, 293-295,
	425, 432, 435	-436, 644, 661
Morbidity	462, 464, 526	-527, 534, 586
Mortality	310-311, 313, 322, 462-464, 483	3, 525536, 586
Multilateral Environmental Agreements (MEAs) 50, 435-437		
Multinational Firms 431, 60 [°]		

Ν

National and international policies

climate change 44, 52, 80, 403-443, 465, 478, 482, 567, 594, 620, 648 climate change mitigation 21-22, 51, 53-54, 460, 470, 474-475, 487-489, 493-495, 571, 634, 640 economic 52, 94, 389, 422, 469, 472, 504, 641 50, 181, 200, 375, 412, 436 energy efficiency standards energy 404, 436, 592 environmental control 473 environmental labels 421 378, 387 fiscal and regulatory measures industrial 330, 485, 625, 637 policy instruments 12, 19, 21, 48-50, 53, 77, 79, 82, 103-104, 108-109, 129, 137, 160, 388, 404-442, 477-478, 494-495, 512-522, 589, 648 macroeconomic 48, 385, 485, 487 market-based 49, 407-408, 440 performance standards 12, 49, 82, 404, 430-431, 435, 441 pollution control 438, 473 price 380 203, 384, 408-409 regulatory research and development 54, 414, 421 sectoral 52, 469, 507, 636, 641 structural reform 409 subsidies see Subsidies taxes see Taxes technology 54, 482, 491, 565, 589 voluntary agreements 34, 47, 49-50, 285, 380, 404, 417-419, 431, 434, 441, 490, 512, 519-520, 584, 614 National Climate Change Action Plans 386 Natural gas 25-27, 36, 39, 41, 47, 61-62, 65, 122, 149-150, 158-160, 179, 190, 203, 212, 236-240, 258-265, 381-383, 411, 571, **574-576**, 578-579, 594, 608, 646 Net primary production 332 Newly industrialized countries (NICs) 484 NGOs 21, 46, 106-108, 329, 362, 370, 387, 412, 643, 650, 661 Nitrous oxide (N₂O) 26, 183, 205, 327, 384, 522, 574 No regrets biological opportunities 42, 327 definition 21 measures 55, 60, 549, 585 options 21, 52-53, 330, 350, 386, 474-476, 585, 640, 659, 667 policies 353, 506-507, 567, 614 potential 53, 55, 351, 475, 667 sectoral opportunities 28, 200 Non-CO₂ Greenhouse Gases 60, 205-206, 213, 216, 222-225, 282-297 **Non-Annex B Countries** 58, 61, 502, 570-571, 575, 581, 594

Non-Annex I countries	20, 25, 50, 55, 60-61, 71, 82, 87-92, 97,		
	105, 133, 135, 153-155, 160, 254, 258, 386,		
	405, 426, 434, 541, 567, 617-618		
Non-governmental organisations see NGOs			
Non-Methane Volatile Organic Compounds (NMVOCs) 125-127,			
	239, 526-527		
Nuclear power	26, 36-37, 39-41, 65, 158, 181, 240-242 ,		
	254-259, 411, 508, 577-579 , 608		
0			

O

Official Development Assistance (ODA)	180, 354, 361-362 ,	
	427, 644	
Opportunities 20, 26, 29, 33-38, 40-44, 46-4	18, 50, 60, 66, 71, 91,	
agricultural lands	324-326	
barriers and	350-390	
definition	44	
energy efficiency improvement	185	
forestry	316-324	
future generations	483-484	
for mutual cooperation	426	
Opportunity cost see Costs		
Optimal policy 1	9, 125, 424, 551, 567	
Organization of Petroleum Exporting Countries (OPEC) 59-60.		

Organization of Petroleum Exporting Countries (OPEC) 59-60,		
		63-64, 543-544 , 571-574 , 665
Ozone	37, 40, 85, 281-297	, 464, 529, 533, 579, 644, 661
Depleting Subs	tances (ODS)	40, 283-297
layer protectior	1	40, 174
precursors		579
tropospheric		85

Р

-	
Perfluorocarbons see PFCs	
Petroleum	28, 235-238 543 , 571-576 , 585
PFCs 26, 38, 17	75, 205-206, 213-215 , 282297, 414
Photosynthesis	306-307, 314, 324, 332
Photovoltaics 40, 79, 129	, 158, 187, 247, 253-255, 422, 511
Plantations	245, 311-312, 319-322 , 326, 328
Policies and Measures see Nation	nal and international policies
Policy making/Policy makers	81, 106, 109, 364, 606, 616, 631
Pollutants	21, 51-52, 58, 65, 71
air	579, 586-587, 593
ancillary benefits from, see Anc	illary benefits
environmental	461-463
Polluter Pays Principle	389
Pollution havens	363, 481
Post-SRES scenarios see Scenari	os
Potential	
economic 26, 40	0-41, 44, 47, 99, 175-265 , 281-297,
	352-353 , 364-367, 637, 668
market 44, 189, 201, 229	, 243, 247, 350-398 , 406, 419, 476
physical	243, 406
socioeconomic	28, 30, 44, 261-265, 353-355
technological 40, 44, 10	4, 175-265 , 347-348, 352-353 , 406
Poverty Eradication	86, 88, 93-94, 106, 646
Precautionary Principle	84, 149, 655-656, 670
Precautionary approach see Prec	cautionary principle
Prices	

distorted	48, 354
elasticity	477, 487, 514, 573, 592
incomplete	46, 347
market	44, 83, 240, 351-352, 460- 466, 479, 487
mechanism	571
permit prices	49, 59, 416-417, 543-544
relative	58, 100, 473-474, 483-485, 654, 660
shadow	460, 466, 479, 487
spot	383
volatility of	383
Primary energy see Energy	ду
Privatization	252-253, 312, 371, 383, 388-389, 409
Producer surplus	459, 513
Project assessment	52, 469, 479, 491
Property rights	35-36, 53, 103, 486, 667, 670
inadequate	364-365
land	309, 332, 334, 354
see also Intellectual pro	perty rights
Public good	46, 66, 364, 366, 621, 627, 639, 653
Purchasing Power Parity	87, 528, 535

Q Quality of life

Quotas see Emissions quotas

26, 89, 93, 101, 587

R

Radiative forcing	79, 147, 324, 327, 334, 384, 583-584
Rebound effect	33, 101, 200, 507, 510
Recreation	306, 464, 484
Reforestation	25, 43, 83, 159-160, 318-326 , 385, 522, 588
Regeneration	250, 305, 308, 312, 316-319, 322, 385
Regulatory agencies	46, 354, 366
Regulatory measure	s see National and international policies
Renewable energy	26, 36, 39, 41, 43, 47, 68, 129, 149, 157-160,
212, 242-2	249 , 262-264, 389-390, 421-424, 485-486, 594,
	640, 645
biofuels 38, 4	40, 157, 197, 209, 226, 245 , 258, 308, 323, 587
biogas	229, 231-232, 252, 424, 463, 486
gasification	39, 63, 132, 209, 211, 232-233, 239, 245 ,
	254-257, 563
geothermal	249
hydropower	5, 36, 39-41, 47, 237, 242-243 , 254-259,
	265, 381, 424, 508, 641
marine	249
solar 26	6, 41, 99, 159-160, 247-249 , 256-259, 424, 641
wind	41, 158, 245-246 , 265, 423-424
Research and Develo	opment see National and international policies
Reserves	
definition	4
fossil fuel	6, 27-29, 36-37, 63, 158, 179, 235-237 , 543,
	568, 572, 576, 592, 594
land/forest/nature	312, 316, 324, 329, 476
Residential sector	30, 184, 187-188, 261, 291-292, 373, 507
Resilience	43, 96, 123, 316, 608, 635
Resource	
consumption	26, 46, 98, 101, 347
definition	4

exhaustible	478	Special Report or	n Methodological and Technological Issues in
management	309, 329, 635	Technology Tra	
Revenue recycling	52, 60, 82, 492, 514-519 , 593, 659	Spillovers	58-6
Rice production	35, 324, 384	definition	58
Risk		economic	536, 539-540 , 543-544, 550, 56
management	66, 371, 656	technological	480-482, 589-59
reduction	52, 465, 468	Split incentives	367, 37
Rural areas	100, 225-229, 243, 373-374, 383, 579, 588	Stabilization	19, 21-22, 24-26, 28-29, 61-62, 66-71, 89
		9	5-98, 122-137, 147-160, 409, 439, 544-550, 578
S			607-612, 615, 651-652, 656-659, 673-67
Safe landing	66-67, 122, 609-612 , 616-618	scenarios see Sc	
tolerable windows	66-67, 122, 124, 131, 610, 612, 616-618	targets	61-62, 69-70, 148, 151-152, 158-160, 546
Scenario	120-161	U	548-549, 658-659, 673-67
adaptation	386	Stakeholders	21, 48, 51, 330, 350-352, 360, 380, 387, 390
baseline	24, 52, 61, 122, 133-136, 149156, 183-184,		421, 427, 459, 519, 609, 618, 631, 633, 641
Custille	469-472, 536, 548, 570, 624-625		643-644, 648-652, 66
Business As Usual (1		Standards	33-34, 47, 49-50, 81, 195-200, 232, 285-289
	rs) 23, 122, 142-149, 180-183 , 189, 192-193,		91-292, 365-366 , 371, 385-389, 404-408, 422-423
unving forces (unive	236-237, 308-311 , 315, 368-372, 377, 411,		72, 490-491, 512-513, 528-533, 584-585, 644-64
	484, 488, 490, 495, 512, 565, 654	environmental	363, 412, 431, 436, 481, 56
mitigation	21-22, 24-25, 96, 120-161 , 545, 592	mandatory	191, 375, 41
post-SRES	24, 26, 61, 120, 130, 143, 147-160 , 548-549	performance	49, 82, 404, 412, 430-431, 435, 44
reference	23, 25, 61, 63, 121-122, 567, 584, 592, 616	uniform	43
	eport on Emissions Scenarios	voluntary	200, 41
stabilization	124, 131, 133-134, 152, 155, 510, 544-548	Storyline	23-24, 143-145, 149, 15
Second Assessment R		Structural change	
	9, 66-78, 97-98, 120, 182, 190, 225, 230, 235,	-	-36, 46, 48-49, 61, 63, 91, 100, 181, 191, 245-240
505-50	6, 322-323, 350-351, 376, 457-458, 466, 489,		56, 374-375, 379-381, 384-385, 387-388, 410-41 4
Casardana hanafta a	493, 503, 507, 523, 543, 565, 609-612		6-437, 465-466, 490, 519-520, 550-551, 567, 63
Secondary benefits se	-	agricultural	226, 330-33
Sequential decision m	-	budgetary	359, 56
Sequestration see Car	-	direct	34, 380, 423, 56
Service sector	188, 285	energy	48, 359, 387-388, 410, 422, 565, 56
SF ₆	26, 175, 205-215 , 252, 414-415, 522	fossil fuel	63, 91, 56
Silvicultural practices		government	38
Sinks see Carbon sinks		Sulphur Dioxide	2
Small and Medium-so	cale Enterprises (SMEs) 47, 295, 361,	Sulphur Hexafluo	-
~ ~	379, 647	Supplementarity	425-427, 434-435, 53
SO ₂	65, 215, 237, 239, 245, 409, 415-418, 462,	Supply Side	49, 159, 363-364, 407-409, 64
	464, 473, 525-535, 587	Sustainability	19-23, 43, 48, 51, 53, 66, 68, 71, 84-86, 90-103
trading	530		108, 123, 198-199, 316, 361-362, 385-386, 460
emissions	147, 239, 409, 415, 417-418, 525, 534-535		477-478, 483-484, 495, 634-637, 64
Social		Sustainable devel	-
benefits	51, 68, 332, 367, 370, 462, 480, 647	137-143	3, 376, 386, 425-430, 486, 494, 523, 634-650 , 67
capital see Capital		pathways	44, 34
costs see Costs		policies	23, 68, 142, 634, 637, 647, 649-65
goals	42, 94, 140, 651		
impacts	42, 315, 361, 468-469, 477, 652	Т	
innovation	13, 26, 44, 69, 71, 350, 370, 661	Tax	
structures	22, 46, 48, 137, 350, 354, 368-369, 607	carbon 49, 5	52, 55-56, 64, 82, 84, 122, 124, 150, 156, 159-160
Solar energy see Rene	wable energy	406, 408, 43	30-441 , 492, 509, 512-551 , 566, 570-593 , 623, 65
	29, 39, 182, 188, 211, 235, 249, 374, 583	carbon, effects	11, 17, 56, 496, 522, 555-556, 562, 565
Space Heating			570, 587, 597, 65
	issions Scenarios (SRES) 19, 21, 23-25,		570, 507, 597, 05
Special Report on Em	Security Scenarios (SRES) 19, 21, 23-25, 29, 33-34, 37, 60-61, 90, 96-98, 120-160 , 260,	carbon, impleme	
Special Report on Em 28-2		carbon, impleme carbon, internati	entation 58
Special Report on Em 28-2 28	29, 33-34, 37, 60-61, 90, 96-98, 120-160 , 260,		entation 58 ional 430, 439

	120 510 550
carbon, reve	
credits	34, 47, 375, 380, 408, 435, 443
differentiatio	
distortionary	52-53, 55-56, 416, 441, 472-473,
	494, 513, 516, 521, 659
domestic	49, 430, 437, 441, 472
emission	49, 181, 404, 406, 408, 413-414 , 421,
	424, 431, 435, 442, 488
energy	49, 61, 63, 82, 180, 193, 414-415, 417,423,
	518, 526, 566, 587
environment	tal 413, 437-438, 443, 520, 593
exemptions	38, 56, 245, 421, 519-520, 522
-	/international 404, 430-431
	effect <i>see</i> Interaction effect
policy	47, 100, 203, 479
recycling	492, 494-495, 517-518
reduction	53, 404, 473, 517-518
reform	56, 409, 473, 513
revenue	55, 57, 150, 405, 414, 416, 478-479, 513,
	516, 521, 573, 589
Technological	
developmen	t 37-38, 53, 69, 88, 98, 137, 142, 151, 235, 309,
	353, 441, 472-475, 484, 493, 495, 501,
	645-647, 651, 657, 661, 673
potential see	Potential
progress	66, 99, 136, 149, 159, 183, 211, 372, 412-413,
	421, 474, 551, 592
Technology	
advanced	183, 211, 213
appropriate	35, 243, 386
biotechnolog	
carbon seque	
co-operation	
-	
	44, 46, 71, 352, 356, 365, 367, 379, 384, 441-442, 643
	tally Sound (ESTs) 58-59
obsolete	362
transfer	19, 35-36, 41, 48, 53, 67-69, 149-150, 180-181,
	i0-352, 380-381, 386-388, 390, 429-430 , 581, 643-647
Terrestrial eco	
Toloroblo win	dow approach see Safe landing
Top-down mo	dels see Models
	dels see Models
Top-down mo Total Cost see	dels see Models
Top-down mo Total Cost see	dels see Modelsc Costsssions permits79, 82
Top-down mo Total Cost see Tradable emis	dels see Modelse Costsssions permitsmit systems49, 407, 442
Top-down mo Total Cost see Tradable emis Tradable peri	dels see Models c Costs ssions permits mit systems 49, 407, 442 tas 49, 404
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo	dels see Models c Costs ssions permits mit systems 49, 407, 442 tas 49, 404
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo	dels see Models costs ssions permits mit systems 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportatio	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203,
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportatio	dels see Models costs ssions permits mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587
Top-down mo Total Cost see Tradable emis Tradable peru Tradable quo Transparency Transportatio air	dels see Models c Costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376
Top-down mo Total Cost see Tradable emis Tradable peru Tradable quo Transparency Transportatio air	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportatio air hybrid gasol road	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173 47, 179, 191, 289, 377-378, 586
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportation air hybrid gasol road subsidies	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 (a) 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173 47, 179, 191, 289, 377-378, 586 410
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportation air hybrid gasol road subsidies waterborne	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 404 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173 47, 179, 191, 289, 377-378, 586
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportatio air hybrid gasol road subsidies waterborne Tropical	dels see Models c Costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 (a) 48, 51, 87, 234, 361, 381, 421, 471, 479, 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173 47, 179, 191, 289, 377-378, 586 410 198
Top-down mo Total Cost see Tradable emis Tradable peri Tradable quo Transparency Transportation air hybrid gasol road subsidies waterborne	dels see Models costs ssions permits 79, 82 mit systems 49, 407, 442 tas 49, 407, 442 tas 49, 404 (a) 631-633, 650 on (sector) 28, 38, 47, 65, 131, 177, 179, 189-203, 213, 376, 378, 389, 410, 479, 571, 573, 575, 585, 587 65, 190-191, 193, 203, 376 line-electric vehicles 38, 173 47, 179, 191, 289, 377-378, 586 410

Turbines 39, 180-2	181, 231, 238-240, 243, 245-246,
249-250, 252-259, 4	411, 423, 465, 486, 511, 579, 592
, ,	, , , , , , , , , , , , , , , , , , , ,
U	
Umbrella Group	621, 661
_	021, 001
Uncertainty	201 202
and lack of information	381-382
and policy	365-367
and robust decision making	618-620
in cost estimates 260-261, 467-4	469, 507, 512, 536-538, 575, 578
in data sources	175-179, 216-219
in decision-making analysis	608, 648-657, 666-667
definition	477
role of	83-84
technological	474
valuation of ancillary benefit	528-531, 534
Unemployment <i>see</i> Employment et	
United Nations Conference of Env	
	and Development
(UNCED) 329, 429	
United Nations Framework Conv	_
(UNFCCC)	19-21, 23, 50-51, 54, 60, 62, 68,
Article 2/Ultimate objective	77, 607, 616, 661, 677
Article 3	77, 81, 83, 86, 433, 668
Article 4	86, 424-425, 429, 567, 644
Article 10	429
Article 12	426
critical issues	103
conflict with other international a	greements 435-438
decision making process	612-613
financial mechanism	645
implementation	631-634
national communications to	184, 386, 406, 443
Urban air pollution see Local air p	
Urbanization	183, 187, 293, 369, 373, 387
User charges	360, 490, 583, 585
X 7	
V	
Valuation techniques	459, 463
Benefit Transfer	464 , 528-529, 534-535
Contingent Valuation Method	452, 464 , 529
Value of statistical life (VSL)	483 , 525, 528-529, 534-535
Values	22, 28, 37, 42, 46, 51, 66, 71
biodiversity	486
community	102
cultural	637, 661
democratic	651
economic	139, 144
environmental / ecological	123, 144, 384, 491, 520, 673
institutional	125, 144, 584, 491, 520, 675
monetary	460, 534

non use physical

shift in

use

recreational

socio-political

463-464

460, 464

529

139

649 463

Volatile Organic Cor Organic Compound	npounds (VOCs) <i>see</i> Non-Methane Volatile
Voluntary agreement	ts 34, 47, 49-50, 82, 181, 183, 281, 285-404 ,
417, 4	19, 431, 434, 441, 490, 512, 519-520, 584, 614
Vulnerability	87, 104-105, 107, 654, 656
W	
Waste	26, 35-36, 38-40, 43, 48, 65
animal	224, 229
disposal	230, 234-235, 241, 387, 579
forest	179, 254
heat	180, 198, 220, 238, 240
management	35-36, 39, 43, 48, 65, 213, 230-231 , 233-234,
30	04, 386-387, 425, 440, 470, 510, 579, 636, 639
organic	230-231
plastic	233
radioactive	241
solid	230-232, 233, 243, 254-255, 464
utilization	386-387
wastewater treatment	nt 231-233
waste-to-energy fac	ilities 36, 39, 243
Water	35, 40-43, 48, 65,

Water	35, 40-43, 48, 65,
availability	138, 142, 141, 224, 655
demand	326
management	325, 384

pollution		461, 576
quality		327, 384, 465
supply		384
treatment		233
use		424
wastewater see V	Vaste	
water conservation	on	306, 319, 326
water resources		42, 326
Welfare	19-20, 51-58, 64, 69	9-70, 78, 83, 93, 350, 414,
	438-439, 442, 463, 50	3-504, 513, 516-526, 550,
	565, 580, 586-587, 6	21-622, 628-629, 662-674
animal		225
cost		328, 480
economic	131, 155, 43	9, 460, 479, 483, 639, 647
gain		442, 480, 541-542
global		78, 126
human	85, 87, 98, 10	1, 460, 463, 516, 614, 654
loss 64, 203	, 481, 483, 492, 520, 52	24, 540-542, 572, 574, 654
measure		478, 662-666
social	98, 203, 459-460, 47	75, 483, 516, 612, 634-636
Willingness To Ac	cept	51, 459, 616, 661
Willingness To Pa	y 51, 36	4, 459, 528, 534, 616, 668
Wind energy see Renewable energy		
World Trade Organisation (WTO) 50-51, 421, 435-437		

Chapter Title