13.1.1 Definition and Nature of Scenarios
13.1.2 Climate Scenario Needs of the Impacts Community
13.2 Types of Scenarios of Future Climate
13.2.1 Incremental Scenarios for Sensitivity Studies
13.2.2 Analogue Scenarios
13.2.2.1 Spatial analogues
13.2.2.2 Temporal analogues
13.2.3 Scenarios Based on Outputs from Climate Models
13.2.3.1 Scenarios from General Circulation Models
13.2.3.2 Scenarios from simple climate models
13.2.4 Other Types of Scenarios
13.3.1 The Choice of Baseline Period
13.3.2 The Adequacy of Baseline Climatological Data
13.3.3 Combining Baseline and Modelled Data
13.4 Scenarios with Enhanced Spatial and Temporal Resolution
13.4.1 Spatial Scale of Scenarios
13.4.1.1 Regional modelling
13.4.1.2 Statistical downscaling
13.4.1.3 Applications of the methods to impacts
13.4.2 Temporal Variability
13.4.2.1 Incorporation of changes in variability: daily to interannual time-scales
13.4.2.2 Other techniques for incorporating extremes into climate scenarios
13.5 Representing Uncertainty in Climate Scenarios
13.5.1 Key Uncertainties in Climate Scenarios
13.5.1.1 Specifying alternative emissions futures
13.5.1.2 Uncertainties in converting emissions to concentrations
13.5.1.3 Uncertainties in converting concentrations to radiative forcing
13.5.1.4 Uncertainties in modelling the climate response to a given forcing
13.5.1.5 Uncertainties in converting model response into inputs for impact studies
13.5.2 Approaches for Representing Uncertainties
13.5.2.1 Scaling climate model response patterns
13.5.2.2 Defining climate change signals
13.5.2.3 Risk assessment approaches
13.5.2.4 Annotation of climate scenarios
13.6 Consistency of Scenario Components
Co-ordinating Lead Authors
L.O. Mearns, M. Hulme
Lead Authors
T.R. Carter, R. Leemans, M. Lal, P. Whetton
Contributing Authors
L. Hay, R.N. Jones, R. Katz, T. Kittel, J. Smith, R. Wilby
Review Editors
L.J. Mata, J. Zillman
Other reports in this collection |